Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Front Cell Neurosci ; 18: 1413843, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39109218

RESUMO

Multiple sclerosis is a chronic inflammatory disease of the central nervous system characterized by autoimmune destruction of the myelin sheath, leading to irreversible and progressive functional deficits in patients. Pre-clinical studies involving the use of neural stem cells (NSCs) have already demonstrated their potential in neuronal regeneration and remyelination. However, the exclusive application of cell therapy has not proved sufficient to achieve satisfactory therapeutic levels. Recognizing these limitations, there is a need to combine cell therapy with other adjuvant protocols. In this context, extracellular vesicles (EVs) can contribute to intercellular communication, stimulating the production of proteins and lipids associated with remyelination and providing trophic support to axons. This study aimed to evaluate the therapeutic efficacy of the combination of NSCs and EVs derived from oligodendrocyte precursor cells (OPCs) in an animal model of multiple sclerosis. OPCs were differentiated from NSCs and had their identity confirmed by gene expression analysis and immunocytochemistry. Exosomes were isolated by differential ultracentrifugation and characterized by Western, transmission electron microscopy and nanoparticle tracking analysis. Experimental therapy of C57BL/6 mice induced with experimental autoimmune encephalomyelitis (EAE) were grouped in control, treated with NSCs, treated with OPC-derived EVs and treated with a combination of both. The treatments were evaluated clinically using scores and body weight, microscopically using immunohistochemistry and immunological profile by flow cytometry. The animals showed significant clinical improvement and weight gain with the treatments. However, only the treatments involving EVs led to immune modulation, changing the profile from Th1 to Th2 lymphocytes. Fifteen days after treatment revealed a reduction in reactive microgliosis and astrogliosis in the groups treated with EVs. However, there was no reduction in demyelination. The results indicate the potential therapeutic use of OPC-derived EVs to attenuate inflammation and promote recovery in EAE, especially when combined with cell therapy.

2.
Front Physiol ; 15: 1371839, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694209

RESUMO

Scientific evidence regarding the effect of different ladder-based resistance training (LRT) protocols on the morphology of the neuromuscular system is scarce. Therefore, the present study aimed to compare the morphological response induced by different LRT protocols in the ultrastructure of the tibial nerve and morphology of the motor endplate and muscle fibers of the soleus and plantaris muscles of young adult Wistar rats. Rats were divided into groups: sedentary control (control, n = 9), a predetermined number of climbs and progressive submaximal intensity (fixed, n = 9), high-intensity and high-volume pyramidal system with a predetermined number of climbs (Pyramid, n = 9) and lrt with a high-intensity pyramidal system to exhaustion (failure, n = 9). myelinated fibers and myelin sheath thickness were statistically larger in pyramid, fixed, and failure. myelinated axons were statistically larger in pyramid than in control. schwann cell nuclei were statistically larger in pyramid, fixed, and failure. microtubules and neurofilaments were greater in pyramid than in control. morphological analysis of the postsynaptic component of the plantar and soleus muscles did not indicate any significant difference. for plantaris, the type i myofibers were statistically larger in the pyramid and fixed compared to control. the pyramid, fixed, and failure groups for type ii myofibers had larger csa than control. for soleus, the type i myofibers were statistically larger in the pyramid than in control. pyramid and fixed had larger csa for type ii myofibers than control and failure. the pyramid and fixed groups showed greater mass progression delta than the failure. We concluded that the LRT protocols with greater volume and progression of accumulated mass elicit more significant changes in the ultrastructure of the tibial nerve and muscle hypertrophy without endplate changes.

3.
Cell Tissue Res ; 396(2): 141-155, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38539007

RESUMO

Telocytes (TCs) are CD34-positive interstitial cells that have long cytoplasmic projections, called telopodes; they have been identified in several organs and in various species. These cells establish a complex communication network between different stromal and epithelial cell types, and there is growing evidence that they play a key role in physiology and pathology. In many tissues, TC network impairment has been implicated in the onset and progression of pathological conditions, which makes the study of TCs of great interest for the development of novel therapies. In this review, we summarise the main methods involved in the characterisation of these cells as well as their inherent difficulties and then discuss the functional assays that are used to uncover the role of TCs in normal and pathological conditions, from the most traditional to the most recent. Furthermore, we provide future perspectives in the study of TCs, especially regarding the establishment of more precise markers, commercial lineages and means for drug delivery and genetic editing that directly target TCs.


Assuntos
Telócitos , Telócitos/citologia , Telócitos/metabolismo , Humanos , Animais
4.
Microsc Res Tech ; 87(8): 1733-1741, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38501548

RESUMO

The peripheral nerve injury (PNI) affects the morphology of the whole locomotor apparatus, which can reach the myotendinous junction (MTJ) interface. In the injury condition, the skeletal muscle satellite cells (SC) are triggered, activated, and proliferated to repair their structure, and in the MTJ, the telocytes (TC) are associated to support the interface with the need for remodeling; in that way, these cells can be associated with SC. The study aimed to describe the SC and TC relationship after PNI at the MTJ. Sixteen adult Wistar rats were divided into Control Group (C, n = 8) and PNI Group (PNI, n = 8), PNI was performed by the constriction of the sciatic nerve. The samples were processed for transmission electron microscopy and immunostaining analysis. In the C group was evidenced the arrangement of sarcoplasmic evaginations and invaginations, the support collagen layer with a TC inside it, and an SC through vesicles internally and externally to then. In the PNI group were observed the disarrangement of invaginations and evaginations and sarcomeres degradation at MTJ, as the disposition of telopodes adjacent and in contact to the SC with extracellular vesicles and exosomes in a characterized paracrine activity. These findings can determine a link between the TCs and the SCs at the MTJ remodeling. RESEARCH HIGHLIGHTS: Peripheral nerve injury promotes the myotendinous junction (MTJ) remodeling. The telocytes (TC) and the satellite cells (SC) are present at the myotendinous interface. TC mediated the SC activity at MTJ.


Assuntos
Vesículas Extracelulares , Microscopia Eletrônica de Transmissão , Ratos Wistar , Células Satélites de Músculo Esquelético , Telócitos , Animais , Telócitos/fisiologia , Telócitos/ultraestrutura , Células Satélites de Músculo Esquelético/fisiologia , Células Satélites de Músculo Esquelético/citologia , Ratos , Vesículas Extracelulares/ultraestrutura , Vesículas Extracelulares/metabolismo , Traumatismos dos Nervos Periféricos/patologia , Traumatismos dos Nervos Periféricos/metabolismo , Masculino , Nervo Isquiático/ultraestrutura , Tendões/fisiologia , Músculo Esquelético/ultraestrutura , Junção Miotendínea
5.
Microsc Microanal ; : 1-8, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35659819

RESUMO

The tongue is a fundamental organ in feeding, vocalization, and grooming. It is characterized by evolutionary adaptations reflected by diet, habitat, and function. Rodents are a very diverse mammalian order and the tongue's morphology varies in size, form, and presence of papillae. This work aimed to describe the morphological and ultrastructural aspects of the tongue of Spix's yellow-toothed cavy (Galea spixii, Wagler, 1831). Tongues of Spix's yellow-toothed cavies were analyzed with light microscopy, scanning, and transmission electron microscopy. The results showed that the tongue was divided into apex, body, and root. There were different types of papillae, such as vallate, foliate, laterally placed fungiform, fungiform, filiform, and robust filiform. The epithelium was organized into layers, including keratinized, granulous, spinous, and basal, below were lamina propria, and musculature, which evolved mucous and serous gland clusters. The tongue of Spix's yellow-toothed cavy was structurally and ultrastructurally similar to other rodents and had papillae with similar morphologies to other Caviidae species. However, the presence of robust filiform papillary lines and laterally placed fungiform papillae showed the main differences from other species. This was the first description of the tongue of Spix's yellow-toothed cavy.

6.
Microsc Microanal ; : 1-6, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35258447

RESUMO

The myotendinous junction (MTJ) is a highly specialized region of the locomotor apparatus. Here, we investigated the ultrastructural and molecular effects in the MTJ region after static stretching prior to the ladder-based resistance training. Thirty-two male, 60-day old Wistar rats were divided into four groups: Sedentary, Resistance Training, Stretching, and Stretching-Resistance Training. The gastrocnemius muscle was processed for transmission electron microscopy techniques and Western blot assay. We observed that the static stretching prior to the ladder-based resistance training increased the MTJ components, the fibroblast growth factor (FGF)-2 and FGF-6 protein expression. Also, we demonstrated the lower transforming growth factor expression and no difference in the lysyl oxidase expression after combined training. The MTJ alterations in response to combined training demonstrate adaptive mechanisms which can be used for the prescription or development of methods to reduce or prevent injuries in humans and promote the myotendinous interface benefit.

7.
Biomedicines ; 10(2)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35203688

RESUMO

The myotendinous junction (MTJ) is an interface that different stimuli alter their morphology. One of the main stimuli to promote alterations in the MTJ morphology is physical exercise. The present study aimed to investigate the morphology and molecular MTJ adaptations of biceps brachii muscle in adult Wistar rats submitted to different ladder-based protocols. Forty Wistar rats (90 days old) were divided into four groups: Sedentary (S), Climbing (C), Overload Climbing (OC), Climbing, and Overload Climbing (COC). The results of light microscopy demonstrated the cell and collagen tissue reorganization in the experimental groups. The sarcomeres lengths of different regions showed a particular development according to the specific protocols. The sarcoplasmic invaginations and evaginations demonstrated positive increases that promoted the myotendinous interface development. In the extracellular matrix, the structures presented an increase principally in the COC group. Finally, the immunofluorescence analysis showed the telocytes disposition adjacent to the MTJ region in all experimental groups, revealing their network organization. Thus, we concluded that the different protocols contributed to the morphological adaptations with beneficial effects in distinct ways of tissue and cellular development and can be used as a model for MTJ remodeling to future proteomic and genetic analysis.

8.
Microsc Microanal ; : 1-8, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35067262

RESUMO

The mdx mouse is an experimental model of Duchenne muscular dystrophy, a genetic disorder characterized by progressive muscular degeneration which affects the oral cavity musculature, and promotes difficulty in swallowing. This study aimed to describe morphological, structural, and ultrastructural changes in the tongue mucosa and musculature of mdx mice. Forty six-month-old mice were divided into two groups: Control C57bl/10 (n = 20) and mdx C57bl/10mdx (n = 20). The tongue was dissected and analyzed with light microscopy, scanning electron microscopy, and transmission electron microscopy techniques. Our results showed conical and triangular filiform, fungiform, foliate, and vallate papillae, and their connective tissue cores. The epithelium layers identified were corneum, granulosum, spinosum, and basale. The mdx group had a thicker epithelium. Lamina propria was composed of reddish and greenish collagen. In mdx, collagen was present in the musculature of the tongue's body and in the muscular tissue between mucous and serous glands of the caudal region. Musculature was also characterized by a shorter length of sarcoplasmic invaginations, myocytolysis in mitochondrial groupings, and inflammatory focus. In conclusion, the tongue of 6-month-old mdx mice had morphology, structure, and ultrastructure revealed, showing higher wear of filiform papillae indirect reflex from the muscular degeneration process.

9.
Tissue Cell ; 75: 101741, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35074725

RESUMO

To investigate the effects of the previous administration of testosterone propionate (TP) on the morphology of the gastrocnemius muscle of Wistar rats submitted to ladder-based resistance training (LRT). Twenty-eight rats were divided equally into groups: initial control (CI), 4-week TP (CT4), 4-week TP + LRT (TRT), and placebo + LRT (RT). The rats from the CT4 and TRT groups were treated with TP for four weeks (10 mg/kg/week). TRT and RT trained for ten weeks. The rodents were euthanized at the end of the experiment, and gastrocnemius muscle, prostate, and left and right testicles were collected. There was no statistical difference between the RT and TRT for final volume load. The prostate mass of the TRT and RT groups was statistically heavier than the CT4 group (P < 0.01). The TRT group's prostate/body mass ratio was statistically different from the CT4 group (P < 0.05). The TRT group was shown to have larger type I, type II, and mean fCSA fibers than all other groups (P < 0.001). Regarding the nuclei/fiber ratio (N/f), the CT4, RT, and TRT groups had higher values than CI (P < 0.01). In addition, the RT group showed a higher N/f ratio than CT4 (P < 0.001) but lower than TRT (P < 0.001). In conclusion, short-term TP administration before resistance training can elicit a greater N/f ratio and size of the mean fCSA of the Gastrocnemius muscle of young adult Wistar rats than resistance training alone.


Assuntos
Treinamento Resistido , Propionato de Testosterona , Animais , Humanos , Hipertrofia , Masculino , Músculo Esquelético , Ratos , Ratos Wistar , Testosterona , Propionato de Testosterona/farmacologia
10.
Exp Brain Res ; 240(3): 887-896, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35075497

RESUMO

The present study aimed to compare the morphological response induced by different ladder-based resistance training (LRT) protocols on the peripheral nerve ultrastructure of young adult Wistar rats. Twenty-nine rodents were distributed into groups: control (CON), submaximal (SUBMAX [6 climbs/session, moderate intensity, 3x/week]) and maximum (MAX [> 4 climbs/session, maximum intensity, 3x/week]) LRT. After 8 weeks, the radial and sciatic nerves were removed and prepared for transmission electron microscopy. In the radial nerve, the myelinated fibers and axons, myelin sheath thickness, and unmyelinated axons were statistically greater in the SUBMAX and MAX. The MAX group had greater unmyelinated fibers than SUBMAX. The Schwann cell (SC) nuclei diameter was statistically larger in the SUBMAX than the CON. The number of microtubules and neurofilaments was statistically higher in the SUBMAX and MAX. In the sciatic nerve, the myelinated fibers, myelinated and unmyelinated axons, and myelin sheath thickness were statistically greater in the SUBMAX and MAX. The SUBMAX and MAX had more SC at the nuclei level than CON. The SC nuclei were statistically larger in the SUBMAX and MAX. The number of microtubules and neurofilaments was statistically higher in the SUBMAX and MAX. Total training load and total load per climb were not different between groups. The SUBMAX and MAX statistically increased maximum carried load (ML). In conclusion, the different LRT protocols induced similar morphological responses in radial and sciatic nerves, probably due to load progression and equal total load volume.


Assuntos
Treinamento Resistido , Animais , Humanos , Bainha de Mielina , Nervo Radial , Ratos , Ratos Wistar , Nervo Isquiático
11.
Toxins (Basel) ; 13(11)2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34822611

RESUMO

Multiple sclerosis (MS) is a demyelinating disease of inflammatory and autoimmune origin, which induces sensory and progressive motor impairments, including pain. Cells of the immune system actively participate in the pathogenesis and progression of MS by inducing neuroinflammation, tissue damage, and demyelination. Crotalphine (CRO), a structural analogue to a peptide firstly identified in Crotalus durissus terrificus snake venom, induces analgesia by endogenous opioid release and type 2 cannabinoid receptor (CB2) activation. Since CB2 activation downregulates neuroinflammation and ameliorates symptoms in mice models of MS, it was presently investigated whether CRO has a beneficial effect in the experimental autoimmune encephalomyelitis (EAE). CRO was administered on the 5th day after immunization, in a single dose, or five doses starting at the peak of disease. CRO partially reverted EAE-induced mechanical hyperalgesia and decreased the severity of the clinical signs. In addition, CRO decreases the inflammatory infiltrate and glial cells activation followed by TNF-α and IL-17 downregulation in the spinal cord. Peripherally, CRO recovers the EAE-induced impairment in myelin thickness in the sciatic nerve. Therefore, CRO interferes with central and peripheral neuroinflammation, opening perspectives to MS control.


Assuntos
Encefalomielite Autoimune Experimental/tratamento farmacológico , Doenças Neuroinflamatórias/tratamento farmacológico , Dor/tratamento farmacológico , Peptídeos/farmacologia , Analgésicos/farmacologia , Animais , Encefalomielite Autoimune Experimental/fisiopatologia , Feminino , Hiperalgesia/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/fisiopatologia , Receptor CB2 de Canabinoide/efeitos dos fármacos , Receptor CB2 de Canabinoide/metabolismo
12.
Microsc Microanal ; : 1-5, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34376263

RESUMO

The myotendinous junction (MTJ) is the interface between muscle and tendon, and it is the main area of force transmission of the locomotor apparatus. Dystrophic processes promote pathological injury which affects the skeletal muscle and can influence the morphology of the MTJ. This study aimed to investigate the adaptations in MTJ morphology of mdx mice in the tibialis anterior muscle. Male mice (n = 24) were divided into Control­C57bl/10 and mdx­C57bl/10mdx (Duchenne muscular dystrophy experimental model). In the mdx group, centralized nuclei with a large area and greater deposition of type III collagen (fibrosis) were observed. Also, shorter sarcomeres and sarcoplasmatic projections of MTJ were observed. We concluded that the adaptations in mdx mice demonstrated extensive impairment in the MTJ region with reduced ultrastructures.

13.
Int J Mol Sci ; 22(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209663

RESUMO

The myotendinous junction (MTJ) is the muscle-tendon interface and constitutes an integrated mechanical unit to force transmission. Joint immobilization promotes muscle atrophy via disuse, while physical exercise can be used as an adaptative stimulus. In this study, we aimed to investigate the components of the MTJ and their adaptations and the associated elements triggered with aquatic training after joint immobilization. Forty-four male Wistar rats were divided into sedentary (SD), aquatic training (AT), immobilization (IM), and immobilization/aquatic training (IMAT) groups. The samples were processed to measure fiber area, nuclear fractal dimension, MTJ nuclear density, identification of telocytes, sarcomeres, and MTJ perimeter length. In the AT group, the maintenance of ultrastructure and elements in the MTJ region were observed; the IM group presented muscle atrophy effects with reduced MTJ perimeter; the IMAT group demonstrated that aquatic training after joint immobilization promotes benefits in the muscle fiber area and fractal dimension, in the MTJ region shows longer sarcomeres and MTJ perimeter. We identified the presence of telocytes in the MTJ region in all experimental groups. We concluded that aquatic training is an effective rehabilitation method after joint immobilization due to reduced muscle atrophy and regeneration effects on MTJ in rats.


Assuntos
Adaptação Fisiológica , Imobilização , Articulações , Condicionamento Físico Animal , Esforço Físico , Tendões/fisiologia , Animais , Masculino , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestrutura , Ratos , Sarcômeros/ultraestrutura , Tendões/citologia , Tendões/ultraestrutura
14.
Microsc Microanal ; : 1-9, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34294184

RESUMO

Static stretching provides benefits to the range of motion, modulates intramuscular connective tissue, and is incorporated into warm-up exercises. In this study, we present the effects in the motor endplate and belly muscle resulting from previous static stretching to climbing training. Twenty-four adult male Wistar rats were divided into four groups (n = 6 each): Sedentary (Sed), Climbing (Clb), Static stretching (Ss), and Static stretching prior to climbing (Ssc). The animals (Clb, Ss, and Ssc groups) were subjected to a training protocol 3×/week for 8 weeks, and the Ssc group was subjected to the Ss and Clb protocols in the same session. Samples from the animals were processed for immunostaining, histochemistry, and light microscopy. The Clb group presented a higher motor endplate; the Ss group presented no changes in the motor endplate; and the Ssc group demonstrated a higher compactness. We concluded that static stretching prior to the climbing protocol maintained the density of the motor endplate and increased the compactness of the neuromuscular junction structure. Also, there was a reduction in the myofibers' diameter (Type I and IIa), an increase in myofibrillar densities (Type I and IIx, and total), and the reorganization of the myonuclei and the interstitium.

15.
Exp Brain Res ; 239(8): 2583-2592, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34191117

RESUMO

To analyze the morphological response induced by high-volume, high-intensity ladder-based resistance training (LRT) on the ultrastructure of the radial (forelimb) and sciatic (hindlimb) nerves of adults Wistar rats. Twenty rats were equally distributed into groups: sedentary (SED) and LRT. After the rodents were subjected to the maximum load (ML) carrying test, the LRT group performed 6-8 progressive climbs (2 × 50% ML, 2 × 75% ML, 2 × 100% ML, and 2 × 100% ML + 30 g) three times per week. After 8 weeks, the radial and sciatic nerves were removed and prepared for transmission electron microscopy. In the radial nerve, myelinated axons cross-sectional area (CSA), unmyelinated axons CSA, myelin sheath thickness, and Schwann cells nuclei area were statistically larger in the LRT group than SED (p < 0.05). Also, the number of microtubules and neurofilaments per field were statistically higher in the LRT group than in SED (p < 0.01). For sciatic nerve, myelinated fibers CSA, unmyelinated axons CSA, myelin sheath thickness, Schwann cells nuclei area, and the number of neurofilaments per field were statistically larger in the LRT group compared to the SED group (p < 0.05). LRT with high-volume and high-intensity effectively induce similar changes in adult Wistar rats' radial and sciatic nerves' ultrastructure.


Assuntos
Treinamento Resistido , Animais , Membro Anterior , Membro Posterior , Humanos , Bainha de Mielina , Nervos Periféricos , Ratos , Ratos Wistar , Nervo Isquiático
16.
Microsc Microanal ; : 1-5, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33890560

RESUMO

The palate is a fundamental region in food swallowing and presents different adaptations in species. This research aimed to describe structural and ultrastructural characteristics of the palatine epithelium and the connective tissue cores (CTCs) of ten red-rumped agoutis (Dasyprocta leporina­Linnaeus, 1758) using macroscopic, light microscopy, scanning electron microscopy, and transmission electron microscopy. We found nine palatine ridges in the diastema and hard palate, and a smooth surface in the soft palate. Stratified squamous keratinized epithelium with projections of lamina propria and soft palate had gland clusters. Epithelial removal revealed CTCs with a conical shape with high density in the hard palate and the sides of the soft palate. Near the CTCs were nerve fibers in the hard palate, and the soft palate had muscular tissue below the gland clusters. The structural and ultrastructural characteristics enable stability of the hard palate and fixation to the soft palate sides, while the soft palate center has greater mobility thus assisting in food swallowing. We concluded that structural characteristics are similar to other mammals, although the morphology of agouti's palate differs in the amount and disposition of palatine ridges, and the conical CTC's morphology.

17.
Microsc Microanal ; : 1-6, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33879277

RESUMO

Obesity is characterized by excess adipose tissue and chronic inflammation and promotes extensive changes that can compromise skeletal muscles' structural and functional integrity. Obesity can seriously impact the force transmission region between the muscle and the tendon, the myotendinous junction (MTJ). The present study aimed to investigate the plasticity of muscle fibers and MTJ regions in high-fat diet-induced obesity in rat tibialis anterior (TA) and soleus (SO) muscles. Wistar rats were divided into control and obese groups (induced by a high-fat diet). The samples of TA and SO muscles were prepared for histochemical and ultrastructural analysis (sarcomeres and MTJ projection). In the muscle fiber, similar adaptations were observed between the muscles of the smaller fiber (types I and IIa) in the obesity results. The MTJ region demonstrated different adaptations between the analyzed muscles. The TA­MTJ region has shorter ultrastructures, while in the SO­MTJ region, the ultrastructures were larger. We conclude that obesity induced by a high-fat diet promotes similar adaptation in the muscle fibers; however, in the MTJ region, the sarcoplasmatic projections and adjacent sarcomere demonstrate different adaptations according to distinct muscle phenotypes.

18.
Microsc Res Tech ; 84(9): 2017-2023, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33738877

RESUMO

Shark skin is predominantly specialized for swimming and protection, with the dermal denticle being the main structure associated with these abilities. The dermal denticle is a mineral structure with a unique morphology for each species, which allows its use as a taxonomic tool. Few studies have investigated the microscopy aspects of skin and dermal denticles, considering the high diversity of sharks. Here, we investigated the three-dimensional morphoquantitative aspects and mineral composition of dermal denticles in different regions of the angular angel shark, Squatina guggenheim, using scanning electron microscopy and dispersive energy system. With the microscopy, we were able to observe that the dermal denticle morphology changes according to the area it is located. It was possible to describe the dermal denticles individually, from root to the crown, highlighting all of their individualities. Through the dispersive energy system, we showed the proportions of each mineral found in the denticle, by area, demonstrating the composition and the particularities of crown, body, and root, where whitlockite was described for the first time in elasmobranchs. In this way, the present study presented the specificities of the dermal denticles of S. guggenheim, as well sought to understand the different structure functions for the animal, thus assisting future research in animal morphology.


Assuntos
Calcificações da Polpa Dentária , Tubarões , Animais , Microscopia Eletrônica de Varredura , Minerais , Pele
19.
Microsc Res Tech ; 84(8): 1621-1627, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33576550

RESUMO

The morphology of the oral cavity of mammals relates to diet, habitat, and function. The palate is an important region with adaptations for oral somatosensation and mechanical loads due to the pressure of the tongue with food. The research aimed to describe the structural and ultrastructural characteristics of the epithelium and the connective tissue cores of the guinea pig palate using macroscopic, light microscopy, scanning electron microscopy, and transmission electron microscopy analysis. The hard palate had conical and filiform papillae, and the soft palate had open salivary ducts. After the removal of the epithelium, the connective tissue cores revealed thin filaments and laminar projections in the hard palate, and opening ducts were evidenced in the soft palate. The palatine epithelium was keratinized and organized by layers, lamellated corpuscles were found in lamina propria of the hard palate. In contrast, the soft palate had glands clusters associated with nerve fibers, and in both regions were identified telocytes. We concluded that the hard palate presented conical and filiform papillae that differ from other mammals. Besides, it is a new description of the connective tissue cores morphology and the first record of the telocytes in this anatomical region for mammals.


Assuntos
Palato , Telócitos , Animais , Tecido Conjuntivo , Epitélio , Cobaias , Microscopia Eletrônica de Varredura , Língua
20.
Toxins, v. 13, n. 11, 827, nov. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4010

RESUMO

Multiple sclerosis (MS) is a demyelinating disease of inflammatory and autoimmune origin, which induces sensory and progressive motor impairments, including pain. Cells of the immune system actively participate in the pathogenesis and progression of MS by inducing neuroinflammation, tissue damage, and demyelination. Crotalphine (CRO), a structural analogue to a peptide firstly identified in Crotalus durissus terrificus snake venom, induces analgesia by endogenous opioid release and type 2 cannabinoid receptor (CB2) activation. Since CB2 activation downregulates neuroinflammation and ameliorates symptoms in mice models of MS, it was presently investigated whether CRO has a beneficial effect in the experimental autoimmune encephalomyelitis (EAE). CRO was administered on the 5th day after immunization, in a single dose, or five doses starting at the peak of disease. CRO partially reverted EAE-induced mechanical hyperalgesia and decreased the severity of the clinical signs. In addition, CRO decreases the inflammatory infiltrate and glial cells activation followed by TNF-α and IL-17 downregulation in the spinal cord. Peripherally, CRO recovers the EAE-induced impairment in myelin thickness in the sciatic nerve. Therefore, CRO interferes with central and peripheral neuroinflammation, opening perspectives to MS control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA