RESUMO
Adenine nucleotide translocator 4 (Ant4), an ATP/ADP transporter expressed in the early phases of spermatogenesis, plays a crucial role in male fertility. While Ant4 loss causes early arrest of meiosis and increased apoptosis of spermatogenic cells in male mice, its other potential functions in male fertility remain unexplored. Here, we utilized Ant4 knockout mice to delineate the effects of Ant4-deficiency on male reproduction. Our observations demonstrated that Ant4-deficiency led to infertility and impaired testicular development, which was further investigated by evaluating testicular oxidative stress, autophagy, and inflammation. Specifically, the loss of Ant4 led to an imbalance of oxidation and antioxidants. Significant ultrastructural alterations were identified in the testicular tissues of Ant4-deficient mice, including swelling of mitochondria, loss of cristae, and accumulation of autophagosomes. Our results also showed that autophagic flux and AKT-AMPK-mTOR signaling pathway were affected in Ant4-deficient mice. Moreover, Ant4 loss increased the expression of pro-inflammatory factors. Overall, our findings underscored the importance of Ant4 in regulating oxidative stress, autophagy, and inflammation in testicular tissues. Taken together, these insights provided a nuanced understanding of the significance of Ant4 in testicular development.
Assuntos
Infertilidade Masculina , Translocases Mitocondriais de ADP e ATP , Estresse Oxidativo , Testículo , Animais , Masculino , Camundongos , Apoptose/fisiologia , Autofagia/fisiologia , Infertilidade Masculina/metabolismo , Camundongos Knockout , Translocases Mitocondriais de ADP e ATP/metabolismo , Translocases Mitocondriais de ADP e ATP/genética , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia , Espermatogênese/fisiologia , Testículo/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismoRESUMO
Adenine nucleotide translocator 4 (Ant4), an ATP/ADP transporter expressed in the early phases of spermatogenesis, plays a crucial role in male fertility. While Ant4 loss causes early arrest of meiosis and increased apoptosis of spermatogenic cells in male mice, its other potential functions in male fertility remain unexplored. Here, we utilized Ant4 knockout mice to delineate the effects of Ant4-deficiency on male reproduction. Our observations demonstrated that Ant4-deficiency led to infertility and impaired testicular development, which was further investigated by evaluating testicular oxidative stress, autophagy, and inflammation. Specifically, the loss of Ant4 led to an imbalance of oxidation and antioxidants. Significant ultrastructural alterations were identified in the testicular tissues of Ant4-deficient mice, including swelling of mitochondria, loss of cristae, and accumulation of autophagosomes. Our results also showed that autophagic flux and AKT-AMPK-mTOR signaling pathway were affected in Ant4-deficient mice. Moreover, Ant4 loss increased the expression of pro-inflammatory factors. Overall, our findings underscored the importance of Ant4 in regulating oxidative stress, autophagy, and inflammation in testicular tissues. Taken together, these insights provided a nuanced understanding of the significance of Ant4 in testicular development.