Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Regen ; 13(1): 20, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39358480

RESUMO

The COVID-19 pandemic has caused a global health crisis and significant social economic burden. While most individuals experience mild or non-specific symptoms, elderly individuals are at a higher risk of developing severe symptoms and life-threatening complications. Exploring the key factors associated with clinical severity highlights that key characteristics of aging, such as cellular senescence, immune dysregulation, metabolic alterations, and impaired regenerative potential, contribute to disruption of tissue homeostasis of the lung and worse clinical outcome. Senolytic and senomorphic drugs, which are anti-aging treatments designed to eliminate senescent cells or decrease the associated phenotypes, have shown promise in alleviating age-related dysfunctions and offer a novel approach to treating diseases that share certain aspects of underlying mechanisms with aging, including COVID-19. This review summarizes the current understanding of aging in COVID-19 progression, and highlights recent findings on anti-aging drugs that could be repurposed for COVID-19 treatment to complement existing therapies.

2.
Sci Bull (Beijing) ; 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39327125

RESUMO

KMT2D, a H3K4me1 methyltransferase primarily regulating enhancers, is a leading cause of KABUKI syndrome. This multisystem disorder leads to craniofacial and cognitive abnormalities, possibly through neural crest and neuronal lineages. However, the impacted cell-of-origin and molecular mechanism of KMT2D during the development of KABUKI disease remains unknown. Here we have optimized a brain organoid model to investigate neural crest and neuronal differentiation. To pinpoint KMT2D's enhancer target, we developed a genome-wide cis-regulatory element explorer (GREE) based on single-cell multiomic integration. Single cell RNA-seq revealed that KMT2D-knockout (KO) and patient-derived organoids exhibited neural crest deformities and GABAergic overproduction. Mechanistically, GREE identified that KMT2D targets a roof-plate-like niche cell and activates the niche cell-specific WNT3A enhancer, providing the microenvironment for neural crest and neuronal development. Interestingly, KMT2D-mutated mice displayed decreased WNT3A expression in the diencephalon roof plate, indicating impaired niche cell function. Deleting the WNT3A enhancer in the organoids presented phenotypic similarities to KMT2D-depletion, emphasizing the WNT3A enhancer as the predominant target of KMT2D. Conversely, reactivating WNT signaling in KMT2D-KO rescued the lineage defects by restoring the microenvironment. Overall, our discovery of KMT2D's primary target provides insights for reconciling complex phenotypes of KABUKI syndrome and establishes a new paradigm for dissecting the mechanisms of genetic disorders from genotype to phenotype.

3.
Nat Commun ; 15(1): 7186, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169036

RESUMO

Nucleoli are fundamentally essential sites for ribosome biogenesis in cells and formed by liquid-liquid phase separation (LLPS) for a multilayer condensate structure. How the nucleoli integrity is maintained remains poorly understood. Here, we reveal that METTL3/METTL14, the typical methyltransferase complex catalyzing N6-methyladnosine (m6A) on mRNAs maintain nucleoli integrity in human embryonic stem cells (hESCs). METTL3/METTL14 deficiency impairs nucleoli and leads to the complete loss of self-renewal in hESCs. We further show that SUV39H1/H2 protein, the methyltransferases catalyzing H3K9me3 were dramatically elevated in METTL3/METTL14 deficient cells, which causes an accumulation and infiltration of H3K9me3 across the whole nucleolus and impairs the LLPS. Mechanistically, METTL3/METTL14 complex serves as an essential adapter for CRL4 E3 ubiquitin ligase targeting SUV39H1/H2 for polyubiquitination and proteasomal degradation and therefore prevents H3K9me3 accumulation in nucleoli. Together, these findings uncover a previously unknown role of METTL3/METTL14 to maintain nucleoli integrity by facilitating SUV39H1/H2 degradation in human cells.


Assuntos
Nucléolo Celular , Metiltransferases , Proteínas Repressoras , Humanos , Metiltransferases/metabolismo , Metiltransferases/genética , Nucléolo Celular/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Histonas/metabolismo , Ubiquitinação , Células-Tronco Embrionárias Humanas/metabolismo , Proteólise , Células HEK293 , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Histona-Lisina N-Metiltransferase
4.
Cell Stem Cell ; 31(9): 1298-1314.e8, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39146934

RESUMO

Endogenous retroviruses (ERVs) occupy a significant part of the human genome, with some encoding proteins that influence the immune system or regulate cell-cell fusion in early extra-embryonic development. However, whether ERV-derived proteins regulate somatic development is unknown. Here, we report a somatic developmental function for the primate-specific ERVH48-1 (SUPYN/Suppressyn). ERVH48-1 encodes a fragment of a viral envelope that is expressed during early embryonic development. Loss of ERVH48-1 led to impaired mesoderm and cardiomyocyte commitment and diverted cells to an ectoderm-like fate. Mechanistically, ERVH48-1 is localized to sub-cellular membrane compartments through a functional N-terminal signal peptide and binds to the WNT antagonist SFRP2 to promote its polyubiquitination and degradation, thus limiting SFRP2 secretion and blocking repression of WNT/ß-catenin signaling. Knockdown of SFRP2 or expression of a chimeric SFRP2 with the ERVH48-1 signal peptide rescued cardiomyocyte differentiation. This study demonstrates how ERVH48-1 modulates WNT/ß-catenin signaling and cell type commitment in somatic development.


Assuntos
Diferenciação Celular , Retrovirus Endógenos , Proteínas de Membrana , Miócitos Cardíacos , Via de Sinalização Wnt , Humanos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Retrovirus Endógenos/metabolismo , Retrovirus Endógenos/genética , Animais , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Primatas , Células HEK293 , Mesoderma/metabolismo
5.
Nat Commun ; 15(1): 6365, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075094

RESUMO

Cell fate decisions remain poorly understood at the molecular level. Embryogenesis provides a unique opportunity to analyze molecular details associated with cell fate decisions. Works based on model organisms have provided a conceptual framework of genes that specify cell fate control, for example, transcription factors (TFs) controlling processes from pluripotency to immunity1. How TFs specify cell fate remains poorly understood. Here we report that SALL4 relies on NuRD (nucleosome-remodeling and deacetylase complex) to interpret BMP4 signal and decide cell fate in a well-controlled in vitro system. While NuRD complex cooperates with SALL4 to convert mouse embryonic fibroblasts or MEFs to pluripotency, BMP4 diverts the same process to an alternative fate, PrE (primitive endoderm). Mechanistically, BMP4 signals the dissociation of SALL4 from NuRD physically to establish a gene regulatory network for PrE. Our results provide a conceptual framework to explore the rich landscapes of cell fate choices intrinsic to development in higher organisms involving morphogen-TF-chromatin modifier pathways.


Assuntos
Proteína Morfogenética Óssea 4 , Diferenciação Celular , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Fatores de Transcrição , Animais , Camundongos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteína Morfogenética Óssea 4/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Cromatina/metabolismo , Redes Reguladoras de Genes , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Endoderma/metabolismo , Endoderma/citologia , Transdução de Sinais , Linhagem da Célula , Proteínas de Ligação a DNA
6.
Nat Genet ; 56(7): 1503-1515, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38834904

RESUMO

Unlike megabats, which rely on well-developed vision, microbats use ultrasonic echolocation to navigate and locate prey. To study ultrasound perception, here we compared the auditory cortices of microbats and megabats by constructing reference genomes and single-nucleus atlases for four species. We found that parvalbumin (PV)+ neurons exhibited evident cross-species differences and could respond to ultrasound signals, whereas their silencing severely affected ultrasound perception in the mouse auditory cortex. Moreover, megabat PV+ neurons expressed low levels of complexins (CPLX1-CPLX4), which can facilitate neurotransmitter release, while microbat PV+ neurons highly expressed CPLX1, which improves neurotransmission efficiency. Further perturbation of Cplx1 in PV+ neurons impaired ultrasound perception in the mouse auditory cortex. In addition, CPLX1 functioned in other parts of the auditory pathway in microbats but not megabats and exhibited convergent evolution between echolocating microbats and whales. Altogether, we conclude that CPLX1 expression throughout the entire auditory pathway can enhance mammalian ultrasound neurotransmission.


Assuntos
Córtex Auditivo , Vias Auditivas , Proteínas do Tecido Nervoso , Transmissão Sináptica , Animais , Masculino , Camundongos , Córtex Auditivo/metabolismo , Vias Auditivas/metabolismo , Ecolocação , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Parvalbuminas/metabolismo , Parvalbuminas/genética
7.
Dev Cell ; 59(16): 2101-2117.e8, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38823394

RESUMO

Embryonic stem cells (ESCs) can differentiate into all cell types of the embryonic germ layers. ESCs can also generate totipotent 2C-like cells and trophectodermal cells. However, these latter transitions occur at low frequency due to epigenetic barriers, the nature of which is not fully understood. Here, we show that treating mouse ESCs with sodium butyrate (NaB) increases the population of 2C-like cells and enables direct reprogramming of ESCs into trophoblast stem cells (TSCs) without a transition through a 2C-like state. Mechanistically, NaB inhibits histone deacetylase activities in the LSD1-HDAC1/2 corepressor complex. This increases acetylation levels in the regulatory regions of both 2C- and TSC-specific genes, promoting their expression. In addition, NaB-treated cells acquire the capacity to generate blastocyst-like structures that can develop beyond the implantation stage in vitro and form deciduae in vivo. These results identify how epigenetics restrict the totipotent and trophectoderm fate in mouse ESCs.


Assuntos
Diferenciação Celular , Inibidores de Histona Desacetilases , Células-Tronco Embrionárias Murinas , Trofoblastos , Animais , Trofoblastos/citologia , Trofoblastos/metabolismo , Trofoblastos/efeitos dos fármacos , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Diferenciação Celular/efeitos dos fármacos , Reprogramação Celular/efeitos dos fármacos , Histona Desmetilases/metabolismo , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/metabolismo , Epigênese Genética , Feminino , Acetilação/efeitos dos fármacos , Histona Desacetilases/metabolismo , Ácido Butírico/farmacologia
8.
Mol Psychiatry ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704506

RESUMO

Autism spectrum disorder (ASD) encompasses a range of neurodevelopmental conditions. Different mutations on a single ASD gene contribute to heterogeneity of disease phenotypes, possibly due to functional diversity of generated isoforms. SHANK2, a causative gene in ASD, demonstrates this phenomenon, but there is a scarcity of tools for studying endogenous SHANK2 proteins in an isoform-specific manner. Here, we report a point mutation on SHANK2, which is found in a patient with autism, located on exon of the SHANK2B transcript variant (NM_133266.5), hereby SHANK2BY29X. This mutation results in an early stop codon and an aberrant splicing event that impacts SHANK2 transcript variants distinctly. Induced pluripotent stem cells (iPSCs) carrying this mutation, from the patient or isogenic editing, fail to differentiate into functional dopamine (DA) neurons, which can be rescued by genetic correction. Available SMART-Seq single-cell data from human midbrain reveals the abundance of SHANK2B transcript in the ALDH1A1 negative DA neurons. We then show that SHANK2BY29X mutation primarily affects SHANK2B expression and ALDH1A1 negative DA neurons in vitro during early neuronal developmental stage. Mice knocked in with the identical mutation exhibit autistic-like behavior, decreased occupancy of ALDH1A1 negative DA neurons and decreased dopamine release in ventral tegmental area (VTA). Our study provides novel insights on a SHANK2 mutation derived from autism patient and highlights SHANK2B significance in ALDH1A1 negative DA neuron.

9.
Nature ; 627(8004): 594-603, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383780

RESUMO

Although KDM5C is one of the most frequently mutated genes in X-linked intellectual disability1, the exact mechanisms that lead to cognitive impairment remain unknown. Here we use human patient-derived induced pluripotent stem cells and Kdm5c knockout mice to conduct cellular, transcriptomic, chromatin and behavioural studies. KDM5C is identified as a safeguard to ensure that neurodevelopment occurs at an appropriate timescale, the disruption of which leads to intellectual disability. Specifically, there is a developmental window during which KDM5C directly controls WNT output to regulate the timely transition of primary to intermediate progenitor cells and consequently neurogenesis. Treatment with WNT signalling modulators at specific times reveal that only a transient alteration of the canonical WNT signalling pathway is sufficient to rescue the transcriptomic and chromatin landscapes in patient-derived cells and to induce these changes in wild-type cells. Notably, WNT inhibition during this developmental period also rescues behavioural changes of Kdm5c knockout mice. Conversely, a single injection of WNT3A into the brains of wild-type embryonic mice cause anxiety and memory alterations. Our work identifies KDM5C as a crucial sentinel for neurodevelopment and sheds new light on KDM5C mutation-associated intellectual disability. The results also increase our general understanding of memory and anxiety formation, with the identification of WNT functioning in a transient nature to affect long-lasting cognitive function.


Assuntos
Cognição , Embrião de Mamíferos , Desenvolvimento Embrionário , Histona Desmetilases , Via de Sinalização Wnt , Animais , Humanos , Camundongos , Ansiedade , Cromatina/efeitos dos fármacos , Cromatina/genética , Cromatina/metabolismo , Embrião de Mamíferos/metabolismo , Perfilação da Expressão Gênica , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Deficiência Intelectual/genética , Memória , Camundongos Knockout , Mutação , Neurogênese/genética , Via de Sinalização Wnt/efeitos dos fármacos
10.
Cell Biosci ; 13(1): 191, 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838693

RESUMO

BACKGROUND: c-Jun is a proto-oncogene functioning as a transcription factor to activate gene expression under many physiological and pathological conditions, particularly in somatic cells. However, its role in early embryonic development remains unknown. RESULTS: Here, we show that c-Jun acts as a one-way valve to preserve the primed state and impair reversion to the naïve state. c-Jun is induced during the naive to primed transition, and it works to stabilize the chromatin structure and inhibit the reverse transition. Loss of c-Jun has surprisingly little effect on the naïve to primed transition, and no phenotypic effect on primed cells, however, in primed cells the loss of c-Jun leads to a failure to correctly close naïve-specific enhancers. When the primed cells are induced to reprogram to a naïve state, these enhancers are more rapidly activated when c-Jun is lost or impaired, and the conversion is more efficient. CONCLUSIONS: The results of this study indicate that c-Jun can function as a chromatin stabilizer in primed EpiSCs, to maintain the epigenetic cell type state and act as a one-way valve for cell fate conversions.

11.
Dev Cell ; 58(22): 2510-2527.e7, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37875119

RESUMO

Generating cells with the molecular and functional properties of embryo cells and with full developmental potential is an aim with fundamental biological significance. Here we report the in vitro generation of mouse transient morula-like cells (MLCs) via the manipulation of signaling pathways. MLCs are molecularly distinct from embryonic stem cells (ESCs) and cluster instead with embryo 8- to 16-cell stage cells. A single MLC can generate a blastoid, and the efficiency increases to 80% when 8-10 MLCs are used. MLCs make embryoids directly, efficiently, and within 4 days. Transcriptomic analysis shows that day 4-5 MLC-derived embryoids contain the cell types found in natural embryos at early gastrulation. Furthermore, MLCs introduced into morulae segregate into epiblast (EPI), primitive endoderm (PrE), and trophectoderm (TE) fates in blastocyst chimeras and have a molecular signature indistinguishable from that of host embryo cells. These findings represent the generation of cells that are molecularly and functionally similar to the precursors of the first three cell lineages of the embryo.


Assuntos
Blastocisto , Embrião de Mamíferos , Animais , Camundongos , Mórula/metabolismo , Blastocisto/metabolismo , Linhagem da Célula , Embrião de Mamíferos/metabolismo , Células-Tronco Embrionárias , Desenvolvimento Embrionário/fisiologia
12.
Nat Commun ; 14(1): 4225, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454216

RESUMO

Immunotherapy has become established as major treatment modality for multiple types of solid tumors, including colorectal cancer. Identifying novel immunotherapeutic targets to enhance anti-tumor immunity and sensitize current immune checkpoint blockade (ICB) in colorectal cancer is needed. Here we report the histone demethylase PHD finger protein 8 (PHF8, KDM7B), a Jumonji C domain-containing protein that erases repressive histone methyl marks, as an essential mediator of immune escape. Ablation the function of PHF8 abrogates tumor growth, activates anti-tumor immune memory, and augments sensitivity to ICB therapy in mouse models of colorectal cancer. Strikingly, tumor PHF8 deletion stimulates a viral mimicry response in colorectal cancer cells, where the depletion of key components of endogenous nucleic acid sensing diminishes PHF8 loss-meditated antiviral immune responses and anti-tumor effects in vivo. Mechanistically, PHF8 inhibition elicits H3K9me3-dependent retrotransposon activation by promoting proteasomal degradation of the H3K9 methyltransferase SETDB1 in a demethylase-independent manner. Moreover, PHF8 expression is anti-correlated with canonical immune signatures and antiviral immune responses in human colorectal adenocarcinoma. Overall, our study establishes PHF8 as an epigenetic checkpoint, and targeting PHF8 is a promising viral mimicry-inducing approach to enhance intrinsic anti-tumor immunity or to conquer immune resistance.


Assuntos
Histonas , Fatores de Transcrição , Animais , Camundongos , Humanos , Fatores de Transcrição/metabolismo , Histonas/metabolismo , Retroelementos , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Metiltransferases/metabolismo
13.
Nat Commun ; 14(1): 4599, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37524711

RESUMO

Mammalian embryos exhibit sophisticated cellular patterning that is intricately orchestrated at both molecular and cellular level. It has recently become apparent that cells within the animal body display significant heterogeneity, both in terms of their cellular properties and spatial distributions. However, current spatial transcriptomic profiling either lacks three-dimensional representation or is limited in its ability to capture the complexity of embryonic tissues and organs. Here, we present a spatial transcriptomic atlas of all major organs at embryonic day 13.5 in the mouse embryo, and provide a three-dimensional rendering of molecular regulation for embryonic patterning with stacked sections. By integrating the spatial atlas with corresponding single-cell transcriptomic data, we offer a detailed molecular annotation of the dynamic nature of organ development, spatial cellular interactions, embryonic axes, and divergence of cell fates that underlie mammalian development, which would pave the way for precise organ engineering and stem cell-based regenerative medicine.


Assuntos
Organogênese , Transcriptoma , Animais , Camundongos , Organogênese/genética , Perfilação da Expressão Gênica , Embrião de Mamíferos , Células-Tronco , Mamíferos
15.
Nat Commun ; 14(1): 2846, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37208322

RESUMO

Cell fate decision involves rewiring of the genome, but remains poorly understood at the chromatin level. Here, we report that chromatin remodeling complex NuRD participates in closing open chromatin in the early phase of somatic reprogramming. Sall4, Jdp2, Glis1 and Esrrb can reprogram MEFs to iPSCs efficiently, but only Sall4 is indispensable capable of recruiting endogenous components of NuRD. Yet knocking down NuRD components only reduces reprogramming modestly, in contrast to disrupting the known Sall4-NuRD interaction by mutating or deleting the NuRD interacting motif at its N-terminus that renders Sall4 inept to reprogram. Remarkably, these defects can be partially rescured by grafting NuRD interacting motif onto Jdp2. Further analysis of chromatin accessibility dynamics demonstrates that the Sall4-NuRD axis plays a critical role in closing the open chromatin in the early phase of reprogramming. Among the chromatin loci closed by Sall4-NuRD encode genes resistant to reprogramming. These results identify a previously unrecognized role of NuRD in reprogramming, and may further illuminate chromatin closing as a critical step in cell fate control.


Assuntos
Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Fatores de Transcrição , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Fatores de Transcrição/genética , Diferenciação Celular/genética , Histona Desacetilases/genética , Cromatina , Reprogramação Celular/genética
16.
Cell Res ; 33(6): 421-433, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37085732

RESUMO

The lung is the primary respiratory organ in human, in which the proximal airway and the distal alveoli are responsible for air conduction and gas exchange, respectively. However, the regulation of proximal-distal patterning at the embryonic stage of human lung development is largely unknown. Here we investigated the early lung development of human embryos at weeks 4-8 post fertilization (Carnegie stages 12-21) using single-cell RNA sequencing, and obtained a transcriptomic atlas of 169,686 cells. We observed discernible gene expression patterns of proximal and distal epithelia at week 4, upon the initiation of lung organogenesis. Moreover, we identified novel transcriptional regulators of the patterning of proximal (e.g., THRB and EGR3) and distal (e.g., ETV1 and SOX6) epithelia. Further dissection revealed various stromal cell populations, including an early-embryonic BDNF+ population, providing a proximal-distal patterning niche with spatial specificity. In addition, we elucidated the cell fate bifurcation and maturation of airway and vascular smooth muscle progenitor cells at the early stage of lung development. Together, our study expands the scope of human lung developmental biology at early embryonic stages. The discovery of intrinsic transcriptional regulators and novel niche providers deepens the understanding of epithelial proximal-distal patterning in human lung development, opening up new avenues for regenerative medicine.


Assuntos
Pulmão , Alvéolos Pulmonares , Humanos , Pulmão/metabolismo , Diferenciação Celular/genética , Embrião de Mamíferos , Análise de Sequência de RNA
17.
Nat Commun ; 14(1): 1906, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019930

RESUMO

N6-methyladenosine (m6A) has been increasingly recognized as a new and important regulator of gene expression. To date, transcriptome-wide m6A detection primarily relies on well-established methods using next-generation sequencing (NGS) platform. However, direct RNA sequencing (DRS) using the Oxford Nanopore Technologies (ONT) platform has recently emerged as a promising alternative method to study m6A. While multiple computational tools are being developed to facilitate the direct detection of nucleotide modifications, little is known about the capabilities and limitations of these tools. Here, we systematically compare ten tools used for mapping m6A from ONT DRS data. We find that most tools present a trade-off between precision and recall, and integrating results from multiple tools greatly improve performance. Using a negative control could improve precision by subtracting certain intrinsic bias. We also observed variation in detection capabilities and quantitative information among motifs, and identified sequencing depth and m6A stoichiometry as potential factors affecting performance. Our study provides insight into the computational tools currently used for mapping m6A based on ONT DRS data and highlights the potential for further improving these tools, which may serve as the basis for future research.


Assuntos
Nanoporos , RNA , RNA/genética , Transcriptoma , Adenosina/metabolismo , Análise de Sequência de RNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos
18.
Cell Death Dis ; 14(3): 184, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36882393

RESUMO

Deficiency of the histone H3K9 methyltransferase SETDB1 induces RIPK3-dependent necroptosis in mouse embryonic stem cells (mESCs). However, how necroptosis pathway is activated in this process remains elusive. Here we report that the reactivation of transposable elements (TEs) upon SETDB1 knockout is responsible for the RIPK3 regulation through both cis and trans mechanisms. IAPLTR2_Mm and MMERVK10c-int, both of which are suppressed by SETDB1-dependent H3K9me3, act as enhancer-like cis-regulatory elements and their RIPK3 nearby members enhance RIPK3 expression when SETDB1 is knockout. Moreover, reactivated endogenous retroviruses generate excessive viral mimicry, which promotes necroptosis mainly through Z-DNA-binding protein 1 (ZBP1). These results indicate TEs play an important role in regulating necroptosis.


Assuntos
Elementos de DNA Transponíveis , Células-Tronco Embrionárias Murinas , Animais , Camundongos , Elementos de DNA Transponíveis/genética , Necroptose/genética , Histona Metiltransferases , Proteínas de Ligação a RNA
19.
Cell Rep ; 41(11): 111791, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36516776

RESUMO

Transposable elements (TEs) are the major sources of lineage-specific genomic innovation and comprise nearly half of the human genome, but most of their functions remain unclear. Here, we identify that a series of endogenous retroviruses (ERVs), a TE subclass, regulate the transcriptome at the definitive endoderm stage with in vitro differentiation model from human embryonic stem cell. Notably, these ERVs perform as enhancers containing binding sites for critical transcription factors for endoderm lineage specification. Genome-wide methylation analysis shows most of these ERVs are derepressed by TET1-mediated DNA demethylation. LTR6B, a representative definitive endoderm activating ERV, contains binding sites for FOXA2 and GATA4 and governs the primate-specific expression of its neighboring developmental genes such as ERBB4 in definitive endoderm. Together, our study proposes evidence that recently evolved ERVs represent potent de novo developmental regulatory elements, which, in turn, fine-tune species-specific transcriptomes during endoderm and embryonic development.


Assuntos
Retrovirus Endógenos , Animais , Humanos , Retrovirus Endógenos/genética , Endoderma , Ativação Transcricional , Primatas , Genes Controladores do Desenvolvimento , Desmetilação , Oxigenases de Função Mista/genética , Proteínas Proto-Oncogênicas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA