Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 211: 103-111, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29408059

RESUMO

Health and environmental problems associated with the presence of toxic aromatic compounds in water from oil spills have motivated research to develop effective and economically viable strategies to remove these pollutants. In this work, coconut shell (endocarp), coconut fiber (mesocarp) and coconut shell with fiber (endocarp and mesocarp) obtained from coconut (Cocos nucifera) waste were evaluated as biosorbents of benzene, toluene and naphthalene from water, considering the effect of the solution pH (6-9) and the presence of dissolved organic matter (DOM) in natural water (14 mg/L). In addition, the heat capacity of saturated biosorbents was determined to evaluate their potential as an alternative power source to conventional fossil fuels. Tests of N2 physisorption, SEM, elemental and fiber analysis, ATR-FTIR and acid-based titrations were performed in order to understand the materials' characteristics, and to elucidate the biosorbents' hydrocarbon adsorption mechanism. Coconut fiber showed the highest adsorption capacities (222, 96 and 5.85 mg/g for benzene, toluene and naphthalene, respectively), which was attributed to its morphologic characteristics and to its high concentration of phenolic groups, associated with the lignin structure. The pH of the solution did not have a significant influence on the removal of the contaminants, and the presence of DOM improved the adsorption capacities of aromatic hydrocarbons. The adsorption studies showed biphasic isotherms, which highlighted the strong affinity between the molecules adsorbed on the biosorbents and the aromatic compounds remaining in the solution. Finally, combustion heat analysis of coconut waste saturated with soluble hydrocarbons showed that the heat capacity increased from 4407.79 cal/g to 5064.43 ±â€¯11.6 cal/g, which is comparable with that of woody biomass (3400-4000 cal/g): this waste biomass with added value could be a promising biofuel.


Assuntos
Fontes de Energia Bioelétrica , Cocos , Hidrocarbonetos , Purificação da Água , Adsorção , Fontes de Energia Elétrica , Cinética , Poluentes Químicos da Água
2.
J Environ Manage ; 193: 126-135, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28199948

RESUMO

Release of low-molecular aromatic hydrocarbons (HC) into natural waters brings severe consequences to our environment. Unfortunately very limited information is available regarding the treatment of these pollutants. This work evaluated the use of brown, green and red macroalgae biomass as biosorbents of benzene and toluene, two of the most soluble HC. Raw seaweed biomasses were completely characterized, then evaluated under different temperatures and ionic strengths to assess their potential as biosorbents and to elucidate the biosorption mechanisms involved. Brown macroalgae registered the highest removal capacities for benzene and toluene (112 and 28 mg·g-1, respectively), and these were not affected at ionic strength < 0.6 M. Langmuir and Sips isotherm equations well described biosorption data, and the pseudo-second order model provided the best fit to the kinetics rate. Hydrocarbons are adsorbed onto the diverse chemical components of the cell wall by London forces and hydrophobic interactions.


Assuntos
Benzeno , Alga Marinha/química , Adsorção , Biomassa , Concentração de Íons de Hidrogênio , Cinética , Concentração Osmolar , Temperatura , Tolueno , Poluentes Químicos da Água/química
3.
J Colloid Interface Sci ; 455: 194-202, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26070190

RESUMO

Various health problems associated with drinking water containing high fluoride levels, have motivated researchers to develop more efficient adsorbents to remove fluoride from water for beneficial concentrations to human health. The objective of this research was to anchor lanthanum oxyhydroxides on a commercial granular activated carbon (GAC) to remove fluoride from water considering the effect of the solution pH, and the presence of co-existing anions and organic matter. The activated carbon was modified with lanthanum oxyhydroxides by impregnation. SEM and XRD were performed in order to determine the crystal structure and morphology of the La(III) particles anchored on the GAC surface. FT-IR and pK(a)'s distribution were determined in order to elucidate both the possible mechanism of the lanthanum anchorage on the activated carbon surface and the fluoride adsorption mechanism on the modified material. The results showed that lanthanum ions prefer binding to carboxyl and phenolic groups on the activated carbon surface. Potentiometric titrations revealed that the modified carbon (GAC-La) possesses positive charge at a pH lower than 9. The adsorption capacity of the modified GAC increased five times in contrast to an unmodified GAC adsorption capacity at an initial F(-) concentration of 20 mg L(-1). Moreover, the presence of co-existing anions had no effect on the fluoride adsorption capacity at concentrations below 30 mg L(-1), that indicated high F(-) affinity by the modified adsorbent material (GAG-La).


Assuntos
Carbono/química , Água Potável/química , Fluoretos/isolamento & purificação , Lantânio/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Adsorção , Humanos , Concentração de Íons de Hidrogênio , Potenciometria , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA