Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Mol Neurobiol ; 40(6): 967-989, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31980992

RESUMO

Decapod crustaceans, like mammals, retain the ability to make new neurons throughout life. In mammals, immune cells are closely associated with stem cells that generate adult-born neurons. In crayfish, evidence suggests that immune cells (hemocytes) originating in the immune system travel to neurogenic regions and transform into neural progenitor cells. This nontraditional immune activity takes place continuously under normal physiological conditions, but little is known under pathological conditions (neurodegeneration). In this study, the immune system and its relationship with neurogenesis were investigated during neurodegeneration (unilateral antennular ablation) in adult crayfish. Our experiments show that after ablation (1) Proliferating cells decrease in neurogenic areas of the adult crayfish brain; (2) The immune response, but not neurogenesis, is ablation-side dependent; (3) Inducible nitric oxide synthase (iNOS) plays a crucial role in the neurogenic niche containing neural progenitors during the immune response; (4) Brain areas targeted by antennular projections respond acutely (15 min) to the lesion, increasing the number of local immune cells; (5) Immune cells are recruited to the area surrounding the ipsilateral neurogenic niche; and (6) The vasculature in the niche responds acutely by dilation and possibly also neovascularization. We conclude that immune cells are important in both neurodegeneration and neurogenesis by contributing in physiological conditions to the maintenance of the number of neural precursor cells in the neurogenic niche (neurogenesis), and in pathological conditions (neurodegeneration) by coordinating NO release and vascular responses associated with the neurogenic niche. Our data suggest that neural damage and recovery participate in a balance between these competing immune cell roles.


Assuntos
Astacoidea/imunologia , Sistema Imunitário/imunologia , Degeneração Neural/imunologia , Neurogênese/imunologia , Animais , Astacoidea/ultraestrutura , Vasos Sanguíneos/metabolismo , Encéfalo/patologia , Bromodesoxiuridina/metabolismo , Contagem de Células , Proliferação de Células , Feminino , Glutamato-Amônia Ligase/metabolismo , Hemócitos/metabolismo , Masculino , Neurópilo/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Nicho de Células-Tronco
2.
PLoS One ; 8(11): e80896, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24278343

RESUMO

To date nothing is known about the subacute phase of neurodegeneration following injury in invertebrates. Among few clues available are the results published by our group reporting hemocytes and activated glial cells at chronic and acute phases of the lesion. In vertebrates, glial activation and recruitment of immunological cells are crucial events during neurodegeneration. Here, we aimed to study the subacute stage of neurodegeneration in the crab Ucides cordatus, investigating the cellular/molecular strategy employed 48 hours following ablation of the protocerebral tract (PCT). We also explored the expression of nitric oxide (NO) and histamine in the PCT during this phase of neurodegeneration. Three immune cellular features which seem to characterize the subacute phase of neurodegeneration were revealed by: 1) the recruitment of granulocytes and secondarily of hyalinocytes to the lesion site (inducible NO synthase- and histamine-positive cells); 2) the attraction of a larger number of cells than observed in the acute phase; 3) the presence of activated glial cells as shown by the round shaped nuclei and increased expression of glial fibrillary acidic protein. We suggest that molecules released from granulocytes in the acute phase attract the hyalinocytes thus moving the degeneration process to the subacute phase. The importance of our study resides in the characterization of cellular and biochemical strategies peculiar to the subacute stage of the neurodegeneration in invertebrates. Such events are worth studying in crustaceans because in invertebrates this issue may be addressed with less interference from complex strategies resulting from the acquired immune system.


Assuntos
Sistema Nervoso Central/imunologia , Sistema Nervoso Central/patologia , Crustáceos/imunologia , Imunidade Inata , Degeneração Neural/imunologia , Degeneração Neural/patologia , Animais , Sistema Nervoso Central/ultraestrutura , Crustáceos/ultraestrutura , Proteína Glial Fibrilar Ácida/metabolismo , Hemócitos/patologia , Hemócitos/ultraestrutura , Histamina/metabolismo , Masculino , Óxido Nítrico Sintase Tipo II/metabolismo , Lectinas de Plantas/metabolismo
3.
Cell Tissue Res ; 342(2): 179-89, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20878337

RESUMO

In a previous study, we analyzed and described the features of the degeneration of the protocerebral tract (PCT) of the crustacean Ucides cordatus, after the extirpation of the eyestalk. In that study, among axons with axoplasmic degeneration, cells with granules resembling blood cells (hemocytes) were seen. Therefore, in the present study, we characterized the circulating hemocytes and compared them with the cells recruited to a lesion, which was produced as in the former study. Using histochemistry, immunohistochemistry, and electron microscopy (transmission and scanning), we confirmed that circulating and recruited cells display a similar morphology. Therefore, in the crab, hemocytes were attracted to the lesion site in the acute stage of degeneration, appearing near local glial cells that showed signs of being responsive. Some of the attracted hemocytes displayed a morphology that was considered to be possibly activated blood cells. Also, the cells that migrated to the injured PCT displayed features, such as the presence of hydrolytic enzymes and an ability to phagocytize neural debris, similar to those of vertebrates. In summary, our results indicate that hemocytes were not only phagocytizing neural debris together with glial cells but also that they may be concerned with creating a favorable environment for regenerating events.


Assuntos
Braquiúros , Sistema Nervoso Central/patologia , Hemócitos/patologia , Lobo Óptico de Animais não Mamíferos/patologia , Degeneração Walleriana/patologia , Animais , Axônios/metabolismo , Axônios/patologia , Axônios/ultraestrutura , Movimento Celular , Sistema Nervoso Central/lesões , Hemócitos/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Regeneração Nervosa/fisiologia , Neuroglia/patologia , Neuroglia/ultraestrutura , Lobo Óptico de Animais não Mamíferos/metabolismo , Lobo Óptico de Animais não Mamíferos/ultraestrutura , Fagocitose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA