Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
An Acad Bras Cienc ; 96(2): e20231208, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38747841

RESUMO

The enterotoxigenic Escherichia coli (ETEC) strain is one of the most frequent causative agents of childhood diarrhea and travelers' diarrhea in low-and middle-income countries. Among the virulence factors secreted by ETEC, the exoprotein EtpA has been described as an important. In the present study, a new detection tool for enterotoxigenic E. coli bacteria using the EtpA protein was developed. Initially, antigenic sequences of the EtpA protein were selected via in silico prediction. A chimeric recombinant protein, corresponding to the selected regions, was expressed in an E. coli host, purified and used for the immunization of mice. The specific recognition of anti-EtpA IgG antibodies generated was evaluated using flow cytometry. The tests demonstrated that the antibodiesdeveloped were able to recognize the native EtpA protein. By coupling these antibodies to magnetic beads for the capture and detection of ETEC isolates, cytometric analyses showed an increase in sensitivity, specificity and the effectiveness of the method of separation and detection of these pathogens. This is the first report of the use of this methodology for ETEC separation. Future trials may indicate their potential use for isolating these and other pathogens in clinical samples, thus accelerating the diagnosis and treatment of diseases.


Assuntos
Anticorpos Antibacterianos , Escherichia coli Enterotoxigênica , Proteínas de Escherichia coli , Citometria de Fluxo , Animais , Feminino , Camundongos , Anticorpos Antibacterianos/imunologia , Escherichia coli Enterotoxigênica/imunologia , Proteínas de Escherichia coli/imunologia , Citometria de Fluxo/métodos , Imunoglobulina G/imunologia , Camundongos Endogâmicos BALB C , Sensibilidade e Especificidade , Adesinas Bacterianas/imunologia
2.
Biomolecules ; 13(3)2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36979338

RESUMO

Bergenin is a glycosidic derivative of trihydroxybenzoic acid that was discovered in 1880 by Garreau and Machelart from the rhizomes of the medicinal plant Bergenia crassifolia (currently: Saxifraga crassifolia-Saxifragaceae), though was later isolated from several other plant sources. Since its first report, it has aroused interest because it has several pharmacological activities, mainly antioxidant and anti-inflammatory. In addition to this, bergenin has shown potential antimalarial, antileishmanial, trypanocidal, antiviral, antibacterial, antifungal, antinociceptive, antiarthritic, antiulcerogenic, antidiabetic/antiobesity, antiarrhythmic, anticancer, hepatoprotective, neuroprotective and cardioprotective activities. Thus, this review aimed to describe the sources of isolation of bergenin and its in vitro and in vivo biological and pharmacological activities. Bergenin is distributed in many plant species (at least 112 species belonging to 34 families). Both its derivatives (natural and semisynthetic) and extracts with phytochemical proof of its highest concentration are well studied, and none of the studies showed cytotoxicity for healthy cells.


Assuntos
Extratos Vegetais , Plantas Medicinais , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Plantas Medicinais/química , Antioxidantes/química , Benzopiranos/química
3.
Vaccines (Basel) ; 11(3)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36992253

RESUMO

Acinetobacter baumannii is a Gram-negative, immobile, aerobic nosocomial opportunistic coccobacillus that causes pneumonia, septicemia, and urinary tract infections in immunosuppressed patients. There are no commercially available alternative antimicrobials, and multi-drug resistance is an urgent concern that requires emergency measures and new therapeutic strategies. This study evaluated a multi-drug-resistant A. baumannii whole-cell vaccine, inactivated and adsorbed on an aluminum hydroxide-chitosan (mAhC) matrix, in an A. baumannii sepsis model in immunosuppressed mice by cyclophosphamide (CY). CY-treated mice were divided into immunized, non-immunized, and adjuvant-inoculated groups. Three vaccine doses were given at 0D, 14D, and 28D, followed by a lethal dose of 4.0 × 108 CFU/mL of A. baumannii. Immunized CY-treated mice underwent a significant humoral response, with the highest IgG levels and a higher survival rate (85%); this differed from the non-immunized CY-treated mice, none of whom survived (p < 0.001), and from the adjuvant group, with 45% survival (p < 0.05). Histological data revealed the evident expansion of white spleen pulp from immunized CY-treated mice, whereas, in non-immunized and adjuvanted CY-treated mice, there was more significant organ tissue damage. Our results confirmed the proof-of-concept of the immune response and vaccine protection in a sepsis model in CY-treated mice, contributing to the advancement of new alternatives for protection against A. baumannii infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA