Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Front Microbiol ; 9: 808, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29755436

RESUMO

The Deepwater Horizon oil spill was one of the largest and deepest oil spills recorded. The wellhead was located at approximately 1500 m below the sea where low temperature and high pressure are key environmental characteristics. Using cells collected 4 months following the Deepwater Horizon oil spill at the Gulf of Mexico, we set up Macondo crude oil enrichments at wellhead temperature and different pressures to determine the effect of increasing depth/pressure to the in situ microbial community and their ability to degrade oil. We observed oil degradation under all pressure conditions tested [0.1, 15, and 30 megapascals (MPa)], although oil degradation profiles, cell numbers, and hydrocarbon degradation gene abundances indicated greatest activity at atmospheric pressure. Under all incubations the growth of psychrophilic bacteria was promoted. Bacteria closely related to Oleispira antarctica RB-8 dominated the communities at all pressures. At 30 MPa we observed a shift toward Photobacterium, a genus that includes piezophiles. Alphaproteobacterial members of the Sulfitobacter, previously associated with oil-degradation, were also highly abundant at 0.1 MPa. Our results suggest that pressure acts synergistically with low temperature to slow microbial growth and thus oil degradation in deep-sea environments.

3.
Appl Environ Microbiol ; 80(1): 54-60, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24123740

RESUMO

The diversity of deep-sea high-pressure-adapted (piezophilic) microbes in isolated monoculture remains low. In this study, a novel obligately psychropiezophilic bacterium was isolated from seawater collected from the Puerto Rico Trench at a depth of ∼6,000 m. This isolate, designated YC-1, grew best in a nutrient-rich marine medium, with an optimal growth hydrostatic pressure of 50 MPa (range, 20 to 70 MPa) at 8°C. Under these conditions, the maximum growth rate was extremely slow, 0.017 h(-1), and the maximum yield was 3.51 × 10(7) cells ml(-1). Cell size and shape changed with pressure, shifting from 4.0 to 5.0 µm in length and 0.5 to 0.8 µm in width at 60 MPa to 0.8- to 1.0-µm diameter coccoid cells under 20 MPa, the minimal pressure required for growth. YC-1 is a Gram-negative, facultatively anaerobic heterotroph. Its predominant cellular fatty acids are the monounsaturated fatty acids (MUFAs) C16:1 and C18:1. Unlike many other psychropiezophiles, YC-1 does not synthesize any polyunsaturated fatty acids (PUFAs). Phylogenetic analysis placed YC-1 within the family of Oceanospirillaceae, closely related to the uncultured symbiont of the deep-sea whale bone-eating worms of the genus Osedax. In common with some other members of the Oceanospirillales, including those enriched during the Deepwater Horizon oil spill, YC-1 is capable of hydrocarbon utilization. On the basis of its characteristics, YC-1 appears to represent both a new genus and a new species, which we name Profundimonas piezophila gen. nov., sp. nov.


Assuntos
Oceanospirillaceae/classificação , Oceanospirillaceae/isolamento & purificação , Água do Mar/microbiologia , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ácidos Graxos/análise , Pressão Hidrostática , Dados de Sequência Molecular , Oceanospirillaceae/genética , Oceanospirillaceae/crescimento & desenvolvimento , Filogenia , Porto Rico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA