RESUMO
The objective of this study was to show a comparison of the antioxidant properties of aqueous and ethanolic extracts obtained from Baccharis articulata (Lam.) Pers., Baccharis trimera (Less.) DC., Baccharis spicata (Lam.) Baill. and Baccharis usterii Heering, Asteraceae, by several techniques covering a range of oxidant species and of biotargets. We have investigated the ability of the plant extracts to scavenge DPPH (1,1-diphenyl-2-picryl-hydrazyl) free radical, action against lipid peroxidation of membranes including rat liver microsomes and soy bean phosphatidylcholine liposomes by ascorbyl radical and peroxynitrite. Hydroxyl radical scavenger activity was measured monitoring the deoxyribose oxidation. The hypochlorous acid scavenger activity was also evaluated by the prevention of protein carbonylation and finally the myeloperoxidase (MPO) activity inhibition. The results obtained suggest that the Baccharis extracts studied present a significant antioxidant activity scavenging free radicals and protecting biomolecules from the oxidation. We can suggest that the supposed therapeutic efficacy of this plant could be due, in part, to these properties.
RESUMO
We have investigated the action of melatonin against lipid peroxidation in membranes including brain homogenates (BH), brain and liver microsomes (MIC), and phosphatidylcholine (PC) liposomes, as well as its effect on the activity of pro-oxidant enzymes such as constitutive neuronal nitric oxide synthase (cnNOS), xanthine oxidase (XO) and myeloperoxidase (MPO). The liposomes were reconstituted by a dialysis method, lipid peroxidation was monitored using the thiobarbituric reactive substances (TBARS) method and enzyme activities were measured spectrophotometrically. The ascorbyl and hydroxyl free radicals were generated by the reaction of ascorbic acid + FeSO4 and H2O2 + FeCl2, respectively, and peroxynitrite using a mixture of NaNO2 in an alkaline medium. Melatonin protected against lipid peroxidation induced by distinct reactive oxygen species (ROS) in all membranes tested although with different potency, in the following order BH < MIC < PC. The K0.5 for enzyme inhibition by melatonin was determined for nNOS (2.0 +/- 0.1 mm), for XO (0.8 +/- 0.1 mm) and for MPO (0.063 +/- 0.003 mm), the latter one with high affinity. Melatonin showed a weak effect as a nitrogen monoxide (NO) scavenger in the presence of sodium nitroprusside (NO donor) and low reactivity with 1,1-diphenyl-2-picryl hydrazyl (DPPH). These results demonstrate the antioxidant action of melatonin, principally that related to the activity of pro-oxidant enzymes such as XO and MPO.