Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
An Acad Bras Cienc ; 95(2): e20210162, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37075375

RESUMO

The rhizoma peanut (Arachis glabrata Benth., section Rhizomatosae) is a tetraploid perennial legume. Although several A. glabrata cultivars have been developed as forage and ornamental turf, the origin and genomic constitution of this species are still unknown. In this study, we evaluated the affinity between the genomes of A. glabrata and the probable diploid donors of the sections Rhizomatosae, Arachis, Erectoides and Procumbentes by genomic in situ hybridization (GISH). Single GISH analyses detected that species of the sections Erectoides (E2 subgenome) and Procumbentes (E3 subgenome) were the diploid species with the highest degree of genomic affinity with A. glabrata. Based on single GISH experiments and DNA sequence similarity, three species -A. duranensis, A. paraguariensis subsp. capibarensis, and A. rigonii-, which showed the most uniform and brightest hybridization patterns and lowest genetic distance, were selected as probes for double GISH experiments. Double GISH experiments showed that A. glabrata is constituted by four identical or very similar chromosome complements. In these assays, A. paraguariensis subsp. capibarensis showed the highest brightness onto A. glabrata chromosomes. Thus, our results support the autopolyploid origin of A. glabrata and show that the species with E2 subgenome are the most probable ancestors of this polyploid legume forage.


Assuntos
Arachis , Genoma de Planta , Arachis/genética , Genoma de Planta/genética , Hibridização In Situ , Poliploidia , Genômica
2.
Planta ; 256(3): 50, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35895167

RESUMO

MAIN CONCLUSION: Opposing changes in the abundance of satellite DNA and long terminal repeat (LTR) retroelements are the main contributors to the variation in genome size and heterochromatin amount in Arachis diploids. The South American genus Arachis (Fabaceae) comprises 83 species organized in nine taxonomic sections. Among them, section Arachis is characterized by species with a wide genome and karyotype diversity. Such diversity is determined mainly by the amount and composition of repetitive DNA. Here we performed computational analysis on low coverage genome sequencing to infer the dynamics of changes in major repeat families that led to the differentiation of genomes in diploid species (x = 10) of genus Arachis, focusing on section Arachis. Estimated repeat content ranged from 62.50 to 71.68% of the genomes. Species with different genome composition tended to have different landscapes of repeated sequences. Athila family retrotransposons were the most abundant and variable lineage among Arachis repeatomes, with peaks of transpositional activity inferred at different times in the evolution of the species. Satellite DNAs (satDNAs) were less abundant, but differentially represented among species. High rates of evolution of an AT-rich superfamily of satDNAs led to the differential accumulation of heterochromatin in Arachis genomes. The relationship between genome size variation and the repetitive content is complex. However, largest genomes presented a higher accumulation of LTR elements and lower contents of satDNAs. In contrast, species with lowest genome sizes tended to accumulate satDNAs in detriment of LTR elements. Phylogenetic analysis based on repetitive DNA supported the genome arrangement of section Arachis. Altogether, our results provide the most comprehensive picture on the repeatome dynamics that led to the genome differentiation of Arachis species.


Assuntos
Diploide , Fabaceae , Arachis/genética , DNA Satélite/genética , Evolução Molecular , Fabaceae/genética , Genoma de Planta/genética , Heterocromatina/genética , Filogenia , Retroelementos/genética
3.
Planta ; 249(5): 1405-1415, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30680457

RESUMO

MAIN CONCLUSION: The most conspicuous difference among chromosomes and genomes in Arachis species, the patterns of heterochromatin, was mainly modeled by differential amplification of different members of one superfamily of satellite DNAs. Divergence in repetitive DNA is a primary driving force for genome and chromosome evolution. Section Arachis is karyotypically diverse and has six different genomes. Arachis glandulifera (D genome) has the most asymmetric karyotype and the highest reproductive isolation compared to the well-known A and B genome species. These features make A. glandulifera an interesting model species for studying the main repetitive components that accompanied the genome and chromosome diversification in the section. Here, we performed a genome-wide analysis of repetitive sequences in A. glandulifera and investigated the chromosome distribution of the identified satellite DNA sequences (satDNAs). LTR retroelements, mainly the Ty3-gypsy families "Fidel/Feral" and "Pipoka/Pipa", were the most represented. Comparative analyses with the A and B genomes showed that many of the previously described transposable elements (TEs) were differently represented in the D genome, and that this variation accompanied changes in DNA content. In addition, four major satDNAs were characterized. Agla_CL8sat was the major component of pericentromeric heterochromatin, while Agla_CL39sat, Agla_CL69sat, and Agla_CL122sat were found in heterochromatic and/or euchromatic regions. Even though Agla_CL8sat belong to a different family than that of the major satDNA (ATR-2) found in the heterochromatin of the A, K, and F genomes, both satDNAs are members of the same superfamily. This finding suggests that closely related satDNAs of an ancestral library were differentially amplified leading to the major changes in the heterochromatin patterns that accompanied the karyotype and genome differentiation in Arachis.


Assuntos
Arachis/genética , Elementos de DNA Transponíveis/genética , Genoma de Planta/genética , Heterocromatina/genética , Evolução Molecular , Estudo de Associação Genômica Ampla , Comunicações Via Satélite
4.
J Plant Res ; 128(6): 893-908, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26440502

RESUMO

Notolathyrus is a section of South American endemic species of the genus Lathyrus. The origin, phylogenetic relationship and delimitation of some species are still controversial. The present study provides an exhaustive analysis of the karyotypes of approximately half (10) of the species recognized for section Notolathyrus and four outgroups (sections Lathyrus and Orobus) by cytogenetic mapping of heterochromatic bands and 45S and 5S rDNA loci. The bulk of the parameters analyzed here generated markers to identify most of the chromosomes in the complements of the analyzed species. Chromosome banding showed interspecific variation in the amount and distribution of heterochromatin, and together with the distribution of rDNA loci, allowed the characterization of all the species studied here. Additionally, some of the chromosome parameters described (st chromosomes and the 45S rDNA loci) constitute the first diagnostic characters for the Notolathyrus section. Evolutionary, chromosome data revealed that the South American species are a homogeneous group supporting the monophyly of the section. Variation in the amount of heterochromatin was not directly related to the variation in DNA content of the Notolathyrus species. However, the correlation observed between the amount of heterochromatin and some geographical and bioclimatic variables suggest that the variation in the heterochromatic fraction should have an adaptive value.


Assuntos
DNA Ribossômico/genética , Evolução Molecular , Heterocromatina/genética , Cariótipo , Lathyrus/genética , Cromomicina A3/química , Mapeamento Cromossômico , DNA de Plantas/genética , Hibridização in Situ Fluorescente , Indóis/química , Lathyrus/classificação , América do Sul
5.
J Plant Res ; 127(4): 469-80, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24840864

RESUMO

The genome size was surveyed in 13 Notolathyrus species endemic to South America by flow cytometry and analyzed in an evolutionary and biogeographic context. A DNA content variation of 1.7-fold was registered, and four groups of species with different DNA content were determined. Although, the 2C values were correlated with the total chromosome length and intrachromosomal asymmetry index (A1), the karyotype formula remained almost constant. The conservation of the karyotype formula is in agreement with proportional changes of DNA in the chromosome arms. Species with annual life cycle and shorter generation time had the lowest DNA content and the data suggest that changes in DNA content involved reductions of genome size in the perennial to annual transitions. The variation of 2C values was correlated with precipitation of the coldest quarter and, to some extent, with altitude. Additional correlations with other variables were observed when the species were analyzed separately according to the biogeographic regions. In general, the species with higher DNA content were found in more stable environments. The bulk of evidence suggests that changes on genome size would have been one of the most important mechanisms that drove or accompanied the diversification of Notolathyrus species.


Assuntos
DNA de Plantas/análise , DNA de Plantas/genética , Tamanho do Genoma , Genoma de Planta/genética , Cariótipo , Lathyrus/genética , Evolução Biológica , Núcleo Celular/genética , Citometria de Fluxo , Geografia , América do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA