RESUMO
The Deepwater Horizon oil spill produced large subsurface plumes of dispersed oil and gas in the Gulf of Mexico that stimulated growth of psychrophilic, hydrocarbon degrading bacteria. We tracked succession of plume bacteria before, during and after the 83-day spill to determine the microbial response and biodegradation potential throughout the incident. Dominant bacteria shifted substantially over time and were dependent on relative quantities of different hydrocarbon fractions. Unmitigated flow from the wellhead early in the spill resulted in the highest proportions of n-alkanes and cycloalkanes at depth and corresponded with dominance by Oceanospirillaceae and Pseudomonas. Once partial capture of oil and gas began 43 days into the spill, petroleum hydrocarbons decreased, the fraction of aromatic hydrocarbons increased, and Colwellia, Cycloclasticus, and Pseudoalteromonas increased in dominance. Enrichment of Methylomonas coincided with positive shifts in the δ(13)C values of methane in the plume and indicated significant methane oxidation occurred earlier than previously reported. Anomalous oxygen depressions persisted at plume depths for over six weeks after well shut-in and were likely caused by common marine heterotrophs associated with degradation of high-molecular-weight organic matter, including Methylophaga. Multiple hydrocarbon-degrading bacteria operated simultaneously throughout the spill, but their relative importance was controlled by changes in hydrocarbon supply.
Assuntos
Bactérias/metabolismo , Hidrocarbonetos/metabolismo , Poluição por Petróleo , Poluentes Químicos da Água/metabolismo , Bactérias/genética , Biodegradação Ambiental , DNA Bacteriano/genética , Golfo do México , Hidrocarbonetos/análise , Microbiologia da Água , Poluentes Químicos da Água/análiseRESUMO
The Deepwater Horizon spill released over 4.1 million barrels of crude oil into the Gulf of Mexico. In an effort to mitigate large oil slicks, the dispersant Corexit 9500 was sprayed onto surface slicks and injected directly at the wellhead at water depth of 1,500 m. Several research groups were involved in investigating the fate of the MC-252 oil using newly advanced molecular tools to elucidate microbial interactions with oil, gases, and dispersant. Microbial community analysis by different research groups revealed that hydrocarbon degrading bacteria belonging to Oceanospirillales, Colwellia, Cycloclasticus, Rhodobacterales, Pseudoalteromonas, and methylotrophs were found enriched in the contaminated water column. Presented here is a comprehensive overview of the ecogenomics of microbial degradation of MC-252 oil and gases in the water column and shorelines. We also present some insight into the fate of the dispersant Corexit 9500 that was added to aid in oil dispersion process. Our results show the dispersant was not toxic to the indigenous microbes at concentrations added, and different bacterial species isolated in the aftermath of the spill were able to degrade the various components of Corexit 9500 that included hydrocarbons, glycols, and dioctyl sulfosuccinate.