RESUMO
Avocado oil is a very valuable agro-industrial product which can be perishable in a short time if it is not stored in the right conditions. The encapsulation of the oils through the spray drying technique protects them from oxidation and facilitates their incorporation into different pharmaceutical products and food matrices; however, the selection of environmentally friendly emulsifiers is a great challenge. Four formulations of the following solid particles: Gum Arabic, HI-CAP®100 starch, and phosphorylated waxy maize starch, were selected to prepare avocado oil Pickering emulsions. Two of the formulations have the same composition, but one of them was emulsified by rotor-stator homogenization. The rest of the emulsions were emulsified by combining rotor-stator plus ultrasound methods. The protective effect of mixed particle emulsifiers in avocado oil encapsulated by spray drying was based on the efficiency of encapsulation. The best results were achieved when avocado oil was emulsified with a mixture of phosphorylated starch/HI-CAP®100, where it presented the highest encapsulation efficiency.
RESUMO
Acanthocereus tetragonus (L.) Hummelinck is used as an alternative food source in some Mexican communities. It has been shown that the young stems of A. tetragonus provide crude protein, fiber, and essential minerals for humans. In this work, we analyzed the phytochemical profile, the total phenolic content (TPC), and the antioxidant activity of cooked and crude samples of A. tetragonus to assess its functional metabolite contribution to humans. The phytochemical profile was analyzed using Ultra-High-Performance Liquid Chromatography coupled to High-Resolution Mass Spectrometry (UHPLC-PDA-HESI-Orbitrap-MS/MS). Under the proposed conditions, 35 metabolites were separated and tentatively identified. Of the separated metabolites, 16 occurred exclusively in cooked samples, 6 in crude samples, and 9 in both crude and cooked samples. Among the detected compounds, carboxylic acids, such as threonic, citric, and malic acids, phenolic acids, and glycosylated flavonoids (luteolin-O-rutinoside) were detected. The TPC and antioxidant activity were analyzed using the Folin-Ciocalteu method and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical inhibition method, respectively. The TPC and antioxidant activity were significantly reduced in the cooked samples. We found that some metabolites remained intact after the cooking process, suggesting that A. tetragonus represents a source of functional metabolites for people who consume this plant species.
Assuntos
Cactaceae , Espectrometria de Massas em Tandem , Antioxidantes/química , Cromatografia Líquida de Alta Pressão/métodos , Culinária , Flavonoides/química , Humanos , México , Fenóis/análise , Compostos Fitoquímicos/análise , Extratos Vegetais/química , Espectrometria de Massas em Tandem/métodosRESUMO
Hydrothermal treatments, annealing (ANN) and heat moisture treatment (HMT) were applied to four whole pulse flours (black bean, broad bean, chickpea and lentil) with the aim to increase their slow digestible (SDS) and resistant starch (RS) fractions. In order to assess differences in their molecular interactions, they were analyzed and compared by ATR-FTIR before and after in vitro digestion. Both hydrothermal treatments promoted changes on starch granular architecture, being reflected on their thermal and pasting properties, that where positively correlated with their amylose and protein contents (R=0.96, P<0.01). Overall, the proposed hydrothermal treatments increased their SDS and RS fractions, but they had different effect on their in vitro protein digestion. The ATR-FTIR analysis of cooked flours before and after digestion showed that thermal treatments promoted new physical interactions at molecular scale between starch and proteins, that were correlated with the amount of RS fraction. The outcomes of this study could help to understand the slow digestion properties and possible interactions of the flour components in these four pulses.