RESUMO
Traditional medicine is especially important in the treatment of neglected tropical diseases because it is the way the majority of populations of affected countries manage primary healthcare. We present a case study that can serve as an example that can be replicated by others in the same situation. It is about the validation of a local remedy for myasis in Amazonian Ecuador, which is contrasted by bibliographic chemical reviews and in silico activity tests. We look for scientific arguments to demonstrate the reason for using extracts of Lonchocarpus utilis against south American myasis (tupe). We provide a summary of the isoflavonoids, prenylated flavonoids, chalcones, and stilbenes that justify the action. We make modeling predictions on the affinity of eight chemical components and enzyme targets using Swiss Target Prediction software. We conclude that the effects of this extract can be reasonably attributed to an effect of the parasite that causes the disease, similar to the one produced by synthetic drugs used by conventional medicine (e.g., Ivermectine).
RESUMO
We carried out surveys on the use of Cordia nodosa Lam. in the jungles of Bobonaza (Ecuador). We documented this knowledge to prevent its loss under the Framework of the Convention on Biological Diversity and the Nagoya Protocol. We conducted bibliographic research and identified quercetrin as a significant bioactive molecule. We studied its in silico biological activity. The selected methodology was virtual docking experiments with the proteins responsible for the venomous action of snakes. The molecular structures of quercetrin and 21 selected toxins underwent corresponding tests with SwissDock and Chimera software. The results point to support its antiophidic use. They show reasonable geometries and a binding free energy of -7 to -10.03 kcal/mol. The most favorable values were obtained for the venom of the Asian snake Naja atra (5Z2G, -10.03 kcal/mol). Good results were also obtained from the venom of the Latin American Bothrops pirajai (3CYL, -9.71 kcal/mol) and that of Ecuadorian Bothrops asper snakes (5TFV, -9.47 kcal/mol) and Bothrops atrox (5TS5, -9.49 kcal/mol). In the 5Z2G and 5TS5 L-amino acid oxidases, quercetrin binds in a pocket adjacent to the FAD cofactor, while in the myotoxic homologues of PLA2, 3CYL and 5TFV, it joins in the hydrophobic channel formed when oligomerizing, in the first one similar to α-tocopherol. This study presents a case demonstration of the potential of bioinformatic tools in the validation process of ethnobotanical phytopharmaceuticals and how in silico methods are becoming increasingly useful for sustainable drug discovery.
Assuntos
Antídotos/química , Antídotos/farmacologia , Cordia/química , Modelos Moleculares , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Sítios de Ligação , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Venenos de Serpentes/antagonistas & inibidores , Venenos de Serpentes/química , Relação Estrutura-Atividade , Toxinas Biológicas/antagonistas & inibidores , Toxinas Biológicas/química , ÁrvoresRESUMO
Abstract Artocarpus altilis (Parkinson ex F.A.Zorn.) Fosberg, Moraceae, is a native tree of Southeast Asia introduced to South America at the beginning of the 19th century. It has been used by several indigenous communities. This paper aims to preserve the traditional knowledge at risk of loss and to validate some of the applications found. Current ancestral practices were documented, by interviews in a scarcely contacted Amazonic Kichwa community from the Bobonaza River (Ecuador). The findings were compared with bibliographic citations from other Amazonian cultures. A bioinformatics literature survey of articles that report experiments on the chemical constituents was executed. The major findings are that some uses given in this population may be considered surprising, but the molecular profile of this species justifies its local value. It has cycloartenol (terpenoid), artoindonesianin F (stilbenoid), and different groups of flavonoids (chalcones, prenylflavones, oxepinoflavones, pyrano-flavones, xanthones). This information can prove effective in a search for novel drugs, focused to merge potential innovative uses of the plant.
RESUMO
In rural areas of Latin America, Hyptis infusions are very popular. Hyptis obtusiflora extends from Mexico throughout Central America to Bolivia and Peru. It has added value in Ecuador where it has been used by different ethnic groups. We aimed to learn about the traditional knowledge of ancient Kichwa cultures about this plant, and to contrast this knowledge with the published information organized in occidental databases. We proposed to use traditional knowledge as a source of innovation for social development. Our specific objectives were to catalogue the uses of H. obtusiflora in the community, to prospect on the bibliography on a possible chemical justification for its medicinal use, to propose new products for development, and to give arguments for biodiversity conservation. An ethnobotanical survey was made and a Prisma 2009 Flow Diagram was then followed for scientific validation. We rescued data that are novel contributions for the ethnobotany at the national level. The catalogued main activity of anti-inflammation can be related to the terpene composition and the inhibition of xanthine oxidase. This opens the possibility of researching the extract of this plant as an alternative to allopurinol or uricosuric drugs. This is a concrete example of an argument for biodiversity conservation.
RESUMO
This study's objective was to evaluate the rescued traditional knowledge about the chiricaspi (Brunfelsia grandiflora s.l.), obtained in an isolated Canelo-Kichwa Amazonian community in the Pastaza province (Ecuador). This approach demonstrates well the value of biodiversity conservation in an endangered ecoregion. The authors describe the ancestral practices that remain in force today. They validated them through bibliographic revisions in data megabases, which presented activity and chemical components. The authors also propose possible routes for the development of new bioproducts based on the plant. In silico research about new drug design based on traditional knowledge about this species can produce significant progress in specific areas of childbirth, anesthesiology, and neurology.