Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Sci Food Agric ; 102(12): 5210-5218, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35292973

RESUMO

BACKGROUND: The in vitro gas production technique has been used to evaluate forage fermentation kinetics. However, individual and animal species variation can change fermentation patterns due to differences in ruminal environment and microbiota. The aim was to verify whether rumen inoculum (RI) of llama had superior intrinsic digestion capacity and reduced methane (CH4 ) production compared to sheep RI using fescue and paspalum hay as substrates. RESULTS: Dry and organic matter (OM) digestibility produced with llama RI tended to exceed that of sheep (P = 0.099 and 0.074, respectively) at 24 h of incubation. However, at 48 h, the sheep RI presented higher substrate digestibility and asymptotic value of gas production than that of llama (P < 0.010). CH4 production showed no differences between RI or substrates (P > 0.050). The NH3 -N and total volatile fatty acid concentrations were greater in the RI of llamas compared to those of sheep (P < 0.050). Acetate and butyrate proportions and acetate-to-propionate ratio were greater in the RI of llamas compared to those of sheep (P < 0.001) at 24 and 48 h. However, propionate proportion was greater in sheep compared with llama (P < 0.001). CONCLUSION: Llama RI tended to surpass that of sheep in dry and OM digestibility at 24 h of incubation, but sheep RI at 48 h presented a higher digestibility and gas production value than llama RI. No differences between the two species were detected for CH4 production. This study showed that llama RI did not perform better than sheep RI in digesting low-quality forages. © 2022 Society of Chemical Industry.


Assuntos
Camelídeos Americanos , Rúmen , Ração Animal/análise , Animais , Dieta/veterinária , Digestão , Fermentação , Metano/metabolismo , Propionatos/metabolismo , Rúmen/metabolismo , Ovinos
2.
J Anim Physiol Anim Nutr (Berl) ; 106(5): 978-987, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34708462

RESUMO

Sulphur (S) dietary excess can limit productive performance and increase polioencephalomalacia (PEM) incidence in feedlot cattle (FC). Sulphur excess ingested is transformed to hydrogen sulphide (H2 S) by sulfo-reducing ruminal bacteria (SRB), being high ruminal H2 S concentration responsible for aforementioned damages. As the ruminal mechanisms involved in H2 S concentrations increase have not been elucidated, this study aimed to evaluate the ruminal environment, and the association between ruminal H2 S and dissimilatory SRB (DSRB) concentration in FC experimentally subjected to S dietary excess. Twelve crossbred steers were randomly assigned to one of two dietary S levels (6 animals per treatment): low (LS, 0.19% S) and high (HS, 0.39% S obtained by sodium sulfate inclusion at 0.86%). The study lasted 38 days, and on days 0, 22 and 38, ruminal gas samples were taken to quantify H2 S concentration, and ruminal fluid to determine total bacteria, DSRB, protozoa, volatile fatty acid and ammonia nitrogen concentration. For ruminal H2 S concentration, S dietary × sampling day interaction was significant (p < 0.001), so that the greater concentration was observed on days 22 and 38 with the HS diet. The remaining ruminal parameters were not affected by dietary S level, and no significant correlation between H2 S and DSRB concentrations was observed. The ruminal adaptation that maximizes H2 S production in FC consuming S excess does not seem to be associated with biological or biochemical alterations, nor DSRB concentration changes. The microbial diversity and ruminal environment were resilient to the S excess evaluated, suggesting that 0.39% of dietary S achieved by 0.86% sodium sulfate addition, could be used without disturbances on digestion nor health of FC.


Assuntos
Ração Animal , Rúmen , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Digestão , Ácidos Graxos Voláteis/metabolismo , Fermentação , Rúmen/metabolismo , Enxofre
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA