RESUMO
Reactive oxygen species (ROS) modulate a variety of intracellular events, but their role in osteoblast adhesion and spreading remains unclear. ROS is a very-known physiological modulators of Protein Tyrosine Phosphatases activities, mainly to low molecular weight protein tyrosine phosphatase (LMW-PTP) activity. As this biological mechanism is not clear in osteoblast adhesion, we decided to investigate ROS levels and phosphorylations of FAK and Src, identifying these proteins as potential substrates to LMW-PTP activity. Our results showed that during osteoblast adhesion/spreading (30 min and 2 h of seeding) the intracellular ROS content (hydrogen peroxide) is finely regulated by an effective anti-oxidant system [catalase and Superoxide Dismutase (SOD) activities were evaluated]. During the first 30 min of adhesion, there was an increase in ROS production and a concomitant increase in focal adhesion kinase (FAK) activity after its phosphorylation at Tyrosine 397 (Y397 ). Moreover, after 2 h there was a decrease in ROS content and FAK phosphorylation. There was no significant change in LMW-PTP expression at 30 min or 2 h. In order to validate our hypothesis that LMW-PTP is able to control FAK activity by modulating its phosphorylation status, we decided to overexpress and silence LMW-PTP in this context. Our results showed that FAK phosphorylation at Y397 was increased and decreased in osteoblasts with silenced or overexpressed LMW-PTP, respectively. Together, these data show that ROS modulate FAK phosphorylation by an indirect way, suggesting that a LMW-PTP/FAK supra-molecular complex is involved in transient responses during osteoblast adhesion and spreading.
Assuntos
Osteoblastos/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Catalase/metabolismo , Adesão Celular , Linhagem Celular , Citometria de Fluxo , Quinase 1 de Adesão Focal/metabolismo , Peróxido de Hidrogênio/metabolismo , Immunoblotting , Cinética , Camundongos , Microscopia Confocal , Osteoblastos/citologia , Fosforilação , Proteínas Tirosina Fosfatases/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Interferência de RNA , Superóxido Dismutase/metabolismo , Fatores de Tempo , Tirosina/metabolismoRESUMO
The bone formation executed by osteoblasts represents an interesting research field both for basic and applied investigations. The goal of this work was to evaluate the molecular mechanisms involved during osteoblast differentiation in vitro. Accordingly, we demonstrated that, during the osteoblastic differentiation, TIMP-2 and RECK presented differential expressions, where RECK expression was downregulated from the 14th day in contrast with an increase in TIMP-2. Concomitantly, our results showed a temporal regulation of two major signaling cascades during osteoblast differentiation: proliferation cascades in which RECK, PI3 K, and GSK-3beta play a pivotal role and latter, differentiation cascades with participation of Ras, Rho, Rac-1, PKC alpha/beta, and TIMP-2. Furthermore, we observed that phosphorylation level of paxillin was downregulated while FAK(125) remained unchangeable, but active during extracellular matrix (ECM) remodeling. Concluding, our results provide evidences that RECK and TIMP-2 are involved in the control of ECM remodeling in distinct phases of osteoblast differentiation by modulating MMP activities and a multitude of signaling proteins governs these events.