Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Drug Dev Ind Pharm ; 50(7): 646-657, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39072436

RESUMO

OBJECTIVE: This work aims to present a Quality-by-Design (QbD) step-by-step methodology to formulate anti-ulcer and gastro-protective oral suspensions. METHODS: Sucralfate was used as a drug model. The Quality Target Product Profile was established early during preformulation. Viscosity, resuspendability, pH, and density were assessed through the screening of several suspension platforms based on different prototype compositions. A compatibility study between the active pharmaceutical ingredient and the excipients was performed by thermal analysis and infrared spectroscopy. An Ishikawa fishbone diagram and Failure Mode and Effect Analysis were employed to identify the Critical Material Attributes (CMAs), Critical Process Parameters (CPPs), and Critical Quality Attributes (CQAs). CMAs' and CPPs' impact on identified CQAs was further assessed through a 22 full factorial experimental design at normal conditions after manufacture and one month at super-accelerated stress conditions. Results: The lead prototype exhibited no physicochemical incompatibilities. The risk assessment tools revealed that the concentration of the wetting agent and the total concentration of thickening agents represented critical factors for the quality profile of the preparation in terms of viscosity. The optimized formulation comprising 1.125 w/v% total concentration of Natrosol 250 HX and Avicel RC 591 exhibited an enhanced performance according to the established profile. CONCLUSIONS: The analytical and physicochemical tests showed the robustness and compliance of the final preparation with the quality profile. The proposed step-by-step methodology based on QbD, Design of Experiments, and Quality Risk Management presented in our research holds practical implications for local industries and formulation scientists involved in the development of oral suspensions.


Assuntos
Antiulcerosos , Química Farmacêutica , Composição de Medicamentos , Excipientes , Sucralfato , Suspensões , Antiulcerosos/administração & dosagem , Antiulcerosos/química , Viscosidade , Excipientes/química , Sucralfato/administração & dosagem , Sucralfato/química , Administração Oral , Composição de Medicamentos/métodos , Química Farmacêutica/métodos , Concentração de Íons de Hidrogênio
2.
Pharmaceutics ; 13(12)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34959381

RESUMO

Chronic and non-healing wounds demand personalized and more effective therapies for treating complications and improving patient compliance. Concerning that, this work aims to develop a suitable chitosan-based thermo-responsive scaffold to provide 24 h controlled release of Dexketoprofen trometamol (DKT). Three formulation prototypes were developed using chitosan (F1), 2:1 chitosan: PVA (F2), and 1:1 chitosan:gelatin (F3). Compatibility tests were done by DSC, TG, and FT-IR. SEM was employed to examine the morphology of the surface and inner layers from the scaffolds. In vitro release studies were performed at 32 °C and 38 °C, and the profiles were later adjusted to different kinetic models for the best formulation. F3 showed the most controlled release of DKT at 32 °C for 24 h (77.75 ± 2.72%) and reduced the burst release in the initial 6 h (40.18 ± 1.00%). The formulation exhibited a lower critical solution temperature (LCST) at 34.96 °C, and due to this phase transition, an increased release was observed at 38 °C (88.52 ± 2.07% at 12 h). The release profile for this formulation fits with Hixson-Crowell and Korsmeyer-Peppas kinetic models at both temperatures. Therefore, the developed scaffold for DKT delivery performs adequate controlled release, thereby; it can potentially overcome adherence issues and complications in wound healing applications.

3.
Polymers (Basel) ; 13(11)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070330

RESUMO

Significant problems have arisen in recent years, such as global warming and hunger. These complications are related to the depletion and exploitation of natural resources, as well as environmental pollution. In this context, bioprocesses and biorefinery can be used to manage agro-industrial wastes for obtaining high-value-added products. A large number of by-products are composed of lignin and cellulose, having the potential to be exploited sustainably for chemical and biological conversion. The biorefinery of agro-industrial wastes has applications in many fields, such as pharmaceuticals, medicine, material engineering, and environmental remediation. A comprehensive approach has been developed toward the agro-industrial management of avocado (Persea americana) biomass waste, which can be transformed into high-value-added products to mitigate global warming, save non-renewable energy, and contribute to health and science. Therefore, this work presents a comprehensive review on avocado fruit waste biorefinery and its possible applications as biofuel, as drugs, as bioplastics, in the environmental field, and in emerging nanotechnological opportunities for economic and scientific growth.

4.
Int J Mol Sci ; 22(3)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573351

RESUMO

Innate and adaptive immune responses lead to wound healing by regulating a complex series of events promoting cellular cross-talk. An inflammatory response is presented with its characteristic clinical symptoms: heat, pain, redness, and swelling. Some smart thermo-responsive polymers like chitosan, polyvinylpyrrolidone, alginate, and poly(ε-caprolactone) can be used to create biocompatible and biodegradable scaffolds. These processed thermo-responsive biomaterials possess 3D architectures similar to human structures, providing physical support for cell growth and tissue regeneration. Furthermore, these structures are used as novel drug delivery systems. Locally heated tumors above the polymer lower the critical solution temperature and can induce its conversion into a hydrophobic form by an entropy-driven process, enhancing drug release. When the thermal stimulus is gone, drug release is reduced due to the swelling of the material. As a result, these systems can contribute to the wound healing process in accelerating tissue healing, avoiding large scar tissue, regulating the inflammatory response, and protecting from bacterial infections. This paper integrates the relevant reported contributions of bioengineered scaffolds composed of smart thermo-responsive polymers for drug delivery applications in wound healing. Therefore, we present a comprehensive review that aims to demonstrate these systems' capacity to provide spatially and temporally controlled release strategies for one or more drugs used in wound healing. In this sense, the novel manufacturing techniques of 3D printing and electrospinning are explored for the tuning of their physicochemical properties to adjust therapies according to patient convenience and reduce drug toxicity and side effects.


Assuntos
Materiais Biocompatíveis/química , Preparações de Ação Retardada/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Polímeros/química , Cicatrização/efeitos dos fármacos , Animais , Engenharia Biomédica/métodos , Bioimpressão/métodos , Preparações de Ação Retardada/farmacocinética , Modelos Animais de Doenças , Liberação Controlada de Fármacos , Temperatura Alta , Humanos , Hidrogéis/química , Interações Hidrofóbicas e Hidrofílicas , Impressão Tridimensional
5.
Sensors (Basel) ; 20(23)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291722

RESUMO

Biosensors are measurement devices that can sense several biomolecules, and are widely used for the detection of relevant clinical pathogens such as bacteria and viruses, showing outstanding results. Because of the latent existing risk of facing another pandemic like the one we are living through due to COVID-19, researchers are constantly looking forward to developing new technologies for diagnosis and treatment of infections caused by different bacteria and viruses. Regarding that, nanotechnology has improved biosensors' design and performance through the development of materials and nanoparticles that enhance their affinity, selectivity, and efficacy in detecting these pathogens, such as employing nanoparticles, graphene quantum dots, and electrospun nanofibers. Therefore, this work aims to present a comprehensive review that exposes how biosensors work in terms of bacterial and viral detection, and the nanotechnological features that are contributing to achieving a faster yet still efficient COVID-19 diagnosis at the point-of-care.


Assuntos
Bactérias/genética , Técnicas Biossensoriais/métodos , Vírus/genética , Animais , COVID-19/diagnóstico , COVID-19/virologia , Humanos , Nanotecnologia/métodos , Pandemias/prevenção & controle , SARS-CoV-2/genética
6.
Nanomaterials (Basel) ; 10(9)2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32906575

RESUMO

Currently, metal nanoparticles have varied uses for different medical, pharmaceutical, and agricultural applications. Nanobiotechnology, combined with green chemistry, has great potential for the development of novel and necessary products that benefit human health, environment, and industries. Green chemistry has an important role due to its contribution to unconventional synthesis methods of gold and silver nanoparticles from plant extracts, which have exhibited antimicrobial potential, among other outstanding properties. Biodiversity-rich countries need to collect and convert knowledge from biological resources into processes, compounds, methods, and tools, which need to be achieved along with sustainable use and exploitation of biological diversity. Therefore, this paper describes the relevant reported green synthesis of gold and silver nanoparticles from plant extracts and their capacity as antimicrobial agents within the agricultural field for fighting against bacterial and fungal pathogens that can cause plant, waterborne, and foodborne diseases. Moreover, this work makes a brief review of nanoparticles' contribution to water treatment and the development of "environmentally-friendly" nanofertilizers, nanopesticides, and nanoherbicides, as well as presenting the harmful effects of nanoparticles accumulation in plants and soils.

7.
ADMET DMPK ; 8(4): 325-353, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-35300196

RESUMO

Electrospinning is a novel and sophisticated technique for the production of nanofibers with high surface area, extreme porous structure, small pore size, and surface morphologies that make them suitable for biomedical and bioengineering applications, which can provide solutions to current drug delivery issues of poorly water-soluble drugs. Electrospun nanofibers can be obtained through different methods asides from the conventional one, such as coaxial, multi-jet, side by side, emulsion, and melt electrospinning. In general, the application of an electric potential to a polymer solution causes a charged liquid jet that moves downfield to an oppositely charged collector, where the nanofibers are deposited. Plenty of polymers that differ in their origin, degradation character and water affinity are used during the process. Physicochemical properties of the drug, polymer(s), and solvent systems need to be addressed to guarantee successful manufacturing. Therefore, this review summarizes the recent progress in electrospun nanofibers for their use as a nanotechnological tool for dissolution optimization and drug delivery systems for poorly water-soluble drugs.

8.
Drug Dev Ind Pharm ; 45(10): 1674-1681, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31378098

RESUMO

Objective: The main objective of this research is to develop an immediate release Rupatadine fumarate 10 mg tablets formulation by direct compression, through a Quality by Design approach in Costa Rica. Methods: According to a Quality by Design approach; Target Product Profile, Quality Target Product Profile, and the Critical Quality Attributes were defined. In the preformulation study, compatibility tests were carried out between the raw materials. The Critical Material Attributes were established using Quality Risk Management. Three formulation prototypes were prepared by direct compression and its Critical Process Parameters were defined. The analysis of the prototypes was realized in terms of organoleptic properties, identification, potency, content uniformity, dissolution, disintegration, friability and loss by drying. Results: All the prototypes showed a white or slightly pink surface, potency between 90.0 -110.0 % of the labeling, an acceptance value for the content uniformity lower than the specification (AV < 15), the dissolved amount of active pharmaceutical ingredient was greater than 85.0 % at 30 minutes, friability less than 1.0 %, a disintegration time less than 15 minutes and moisture content less than 2.0 %. Conclusions: The approaching of a Quality by Design model to the current development allowed to obtain satisfactory results in the three formulation prototypes. The excipients to be used can be lactose monohydrate, microcrystalline cellulose, sodium croscarmellose, pregelatinized starch, magnesium stearate, stearic acid, and PVP K-30.


Assuntos
Ciproeptadina/análogos & derivados , Fumaratos/química , Comprimidos/química , Carboximetilcelulose Sódica/química , Celulose/química , Química Farmacêutica/métodos , Ciproeptadina/química , Composição de Medicamentos/métodos , Excipientes/química , Lactose/química , Solubilidade/efeitos dos fármacos , Amido/química , Ácidos Esteáricos/química , Tecnologia Farmacêutica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA