Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Lett Appl Microbiol ; 69(3): 204-211, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31250457

RESUMO

Despite of the beneficial relevance of several lactic acid bacteria (LAB) in the food industry, micro-organisms belonging to this group can determine spoilage in food products and carry a number of virulence and antibiotic resistance-related genes. This study aimed on the characterization of beneficial and safety aspects of five bacteriocinogenic LAB strains (Lactobacillus curvatus 12-named L. curvatus UFV-NPAC1), L. curvatus 36, Weissela viridescens 23, W. viridescens 31 and Lactococcus garvieae 36) isolated from an artisanal Brazilian calabresa, a traditional meat sausage. Regarding their beneficial aspects, all tested isolates were positive for mub, while EF226-cbp, EF1249-fbp and EF2380-maz were detected in at least one tested strain; none of the isolates presented map, EFTu or prgB. However, evaluated strains presented a variable pattern of virulence-related genes, but none of the strains presented gelE, cylA, efsA, cpd, int-Tn or sprE. Moreover, other virulence-related genes evaluated in this study were detected at different frequencies. L. curvatus 12 was generated positive results for ace, ccf, int, ermC, tetL, aac(6')-Ie-aph(2″)-Ia, aph(2″)-Ib, aph(2″)-Ic, bcrB, vanB and vanC2; L. curvatus 36: hyl, asa1, esp, int, ermC, tetK, aph(3')-IIIa, aph(2'')-Ic and vanC2; L. garvieae 32: asa1, ant(4')-Ia, aph(2'')-Ib, catA, vanA and vanC1; W. viridescens 23: esp, cob, ermB, aph(3')-IIIa, aph(2'')-Ic, vanA, vanB and vanC2; W. viridescens 31: hyl, esp, ermC, aph(3')-IIIa, aph(2'')-Ib, aph(2'')-Ic, catA, vanA and vanB. Despite presenting some beneficial aspects, the presence of virulence and antibiotic resistance genes jeopardize their utilization as starter or biopreservatives cultures in food products. Considering the inhibitory potential of these strains, an alternative would be the use of their bacteriocins as semi-purified or pure technological preparation. SIGNIFICANCE AND IMPACT OF THE STUDY: The food industry has a particular interest in using bacteriocinogenic lactic acid bacteria (LAB) as starter, probiotics and/or biopreservatives in different food products. Characterization of additional beneficial features is important to identify new, multifunctional potential probiotic strains. However, these strains can only be applied in food products only after being properly characterized according their potential negative aspects, such as virulence and antibiotic resistance genes. A wide characterization of beneficial and safety aspects of bacteriocinogenic LAB is determinant to guide the proper utilization of these strains, or their purified bacteriocins, by the food industry.


Assuntos
Antibacterianos/farmacologia , Bacteriocinas/biossíntese , Lactobacillales/genética , Fatores de Virulência/genética , Brasil , Resistência Microbiana a Medicamentos/genética , Enterococcus/isolamento & purificação , Microbiologia de Alimentos , Lactobacillales/isolamento & purificação , Lactobacillus/efeitos dos fármacos , Lactococcus/isolamento & purificação , Produtos da Carne/microbiologia , Virulência
2.
Probiotics Antimicrob Proteins ; 9(2): 157-162, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28258546

RESUMO

Corynebacterium vitaeruminis MRU4 was isolated from the cow rumen and was differentiated from other isolates by rep-PCR and RAPD and identified by 16S rRNA sequencing. This strain presented higher survival rates for low pH and bile salts treatments, and it was able to survive and multiply in simulated gastric and intestinal environments. C. vitaeruminis MRU4 had a 53.2% auto-aggregation rate, 42.4% co-aggregation rate with Listeria monocytogenes Scott A, 41.6% co-aggregation rate with Enterococcus faecalis ATCC 19443, 10.0% co-aggregation rate with Lactobacillus sakei ATCC 15521, and 98.2% cell surface hydrophobicity rate. PCR analysis showed the presence of EFTu and map genes. The strain possessed positive results for deconjugation of bile salts (taurocholic acid, taurodeoxycholic acid, glycocholic acid, and glycodeoxycholic acid) and positive results for ß-galactosidase activity and lactose assimilation activity (glucose of 8.15 ± 0.01 CFU/ml and lactose of 9.24 ± 0.02 CFU/ml). No virulence was observed by phenotypical tests. C. vitaeruminis MRU4 was resistant to oxacillin, gentamicin, erythromycin, clindamycin, sulfa/trimethoprim, and rifampicin by the disc diffusion method and showed resistance just for vancomycin by the Etest® strips test. The strain was negative for 50 tested virulence and resistance genes based on performed PCR. Based on our knowledge, this is the first report regarding the beneficial potential of one C. vitaeruminis strain.


Assuntos
Corynebacterium/isolamento & purificação , Rúmen/microbiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bovinos , Corynebacterium/classificação , Corynebacterium/genética , Corynebacterium/crescimento & desenvolvimento , Enterococcus faecalis/fisiologia , Lactobacillus/fisiologia , Listeria monocytogenes/fisiologia , Probióticos , Técnica de Amplificação ao Acaso de DNA Polimórfico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA