Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sci. agric ; 80: e20210148, 2023. tab, graf, mapa
Artigo em Inglês | VETINDEX | ID: biblio-1361163

RESUMO

Increasingly, fast-growing forest plantations are able to support the wood supply but may simultaneously reduce water availability. The trade-off between wood production and water supply is more evident in areas with low water availability, high seasonal variation, or high water demand from local communities. The management regime adopted in forest plantations can either increase or reduce this trade-off. Thus, we assess herein the water and wood supply under different fast-growing forest plantation management regimes to understand how forest management practices can balance the provision of these services. The study was conducted at two catchments with a predominance of fast-growing forest plantations, namely, the mosaic management catchment (MMC) and the intensive management catchment (IMC). Rainfall and streamflow were monitored for three water years. Hydrological indexes were calculated to assess the hydrological regime of both catchments, and make inventories of the forest to assess forest growth rates. MMC had streamflow coefficients, baseflow index and baseflow stability higher than those of IMC. Mean annual wood increment was 32.73 m³ ha-¹ yr-¹ in MMC, with a mean age of 15 years, and 44.40 m³ ha-¹ yr-¹ in IMC at coppice in the second year. MMC hydrological indexes remained stable over the period studied, while in IMC the hydrological indexes were affected by climatic variations, mainly in drier years. MMC showed potential for supplying both water and wood. However, in IMC there was a trade-off between wood supply at the expense of the water supply. Thus, the intensity of fast-growing management can be adjusted to achieve a balance between water and wood supply on a catchment scale.


Assuntos
Madeira/crescimento & desenvolvimento , Madeira/economia , Florestas , Conservação dos Recursos Hídricos
2.
Sci Total Environ ; 584-585: 339-347, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28040217

RESUMO

In Brazil, the cultivation of bioenergy crops is expanding at an accelerated rate. Most of this expansion has occurred over low-intensity pasture and is considered sustainable because it does not involve deforestation of natural vegetation. However, the impacts on the water quality of headwater streams are poorly understood, especially with regard to the influence of land use patterns in the watershed. In this study, we investigated the effects of land-use conversion on the water quality of streams draining sugarcane fields and examined whether the preservation of forested areas at the top of the headwaters would help mitigate the negative impacts of intensive agriculture. Water samples were collected in two paired catchments in southeastern Brazil, which is one of the largest sugarcane production regions in the world. Our results show significant differences in the water quality of streams predominantly draining the pasture or the sugarcane field. Several parameters commonly used to indicate water quality, such as the concentrations of nitrate and suspended solids, were significantly higher in the sugarcane than in the pasture stream. Differences in water quality between the streams draining predominantly pasture or sugarcane fields were accentuated during the wet season. The preservation of forests surrounding the headwater streams was associated with overall better water quality conditions, such as lower nitrate concentrations and temperature of the stream water. We concluded that forest conservation in the headwater agricultural catchments is an important factor preventing water quality degradation in tropical streams. Therefore, we strongly recommend the preservation of robust riparian forests in the headwaters of tropical watersheds with intensive agriculture. More studies on the effects of best agricultural practices in bioenergy crops can greatly improve our capacity to prevent the degradation of water quality in the tropical waterways as intensive agriculture continues to expand in this region of the world.


Assuntos
Agricultura , Produtos Agrícolas/crescimento & desenvolvimento , Rios , Qualidade da Água , Biocombustíveis , Brasil
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA