Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 10(7)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34371635

RESUMO

Soursop fruit (Annona muricata L.) production is diminished by the attack of pathogens such as Nectria haematococca. However, the fruit-pathogen interaction at the biochemical and molecular levels is still unknown. The objective of this study was to analyze the response of the soursop fruit to the presence of N. haematococca during postharvest storage. Soursop fruits were inoculated with the pathogen and total phenolic compounds, antioxidant capacity by Ferric reducing/antioxidant power (FRAP), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS•+), and 2,2'-diphenyl-1-picrylhydrazyl radical (DPPH•), as well as enzymatic activity and transcript levels of polyphenol oxidase (PPO) and superoxide dismutase (SOD), were evaluated at 1, 3, and 5 days of storage. The noninoculated fruits were the controls of the experiment. The highest total phenol content was recorded on day one in the inoculated fruits. FRAP, ABTS, and DPPH activity presented the highest values on day three in the control fruits. Inoculated fruits recorded the highest PPO activity on day five and a five-fold induction in the PPO transcript on day three. SOD activity showed a decrease during the days of storage and 10-fold induction of SOD transcript on day three in the inoculated fruits. Principal component analysis showed that total phenols were the variable that contributed the most to the observed variations. Furthermore, a positive correlation between total phenols and SOD activity, PPO expression, and SOD expression, as well as between DPPH and FRAP, was recorded. The results showed a differential response in antioxidant capacity, enzymatic activity, and gene expression during the interaction of soursop fruits-N. haematococca at postharvest storage.

2.
Toxins (Basel) ; 11(6)2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31200476

RESUMO

Ochratoxin A (OTA) produced by mycotoxigenic fungi (Aspergillus and Penicillium spp.) is an extremely toxic and carcinogenic metabolite. The use of cold plasma to inhibit toxin-producing microorganisms in coffee could be an important alternative to avoid proliferation of mycotoxigenic fungi. Roasted coffee samples were artificially inoculated with A. westerdijikiae, A. steynii, A. versicolor, and A. niger, and incubated at 27 °C over 21 days for OTA production. Samples were cold plasma treated at 30 W input power and 850 V output voltage with helium at 1.5 L/min flow. OTA production in coffee was analyzed by high performance liquid chromatography coupled to a mass spectrometer (HPLC-MS). After 6 min of treatment with cold plasma, fungi were completely inhibited (4 log reduction). Cold plasma reduces 50% of OTA content after 30 min of treatment. Toxicity was estimated for extracts of artificially contaminated roasted coffee samples using the brine shrimp (Artemia salina) lethality assay. Toxicity for untreated roasted coffee was shown to be "toxic", while toxicity for cold plasma treated coffee was reduced to "slightly toxic". These results suggested that cold plasma may be considered as an alternative method for the degradation and reduction of toxin production by mycotoxigenic fungi in the processing of foods and feedstuffs.


Assuntos
Aspergillus/efeitos dos fármacos , Café/microbiologia , Contaminação de Alimentos/prevenção & controle , Ocratoxinas/análise , Penicillium/efeitos dos fármacos , Gases em Plasma/farmacologia , Animais , Artemia , Aspergillus/fisiologia , Penicillium/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA