Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; 17(17): 2710-7, 2016 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-27237432

RESUMO

In this study, the effect of tin (Sn(4+) ) modification on the surface of hematite electrodes synthesized by an aqueous solution route at different times (2, 5, 10, 18, and 24 h) is investigated. As confirmed from X-ray diffraction results, the as-synthesized electrode exhibits an oxyhydroxide phase, which is converted into a pure hematite phase after being subjected to additional thermal treatment at 750 °C for 30 min. The tin-modified hematite electrode is prepared by depositing a solution of Sn(4+) precursor on the as-synthesized electrode, followed by thermal treatment under the same abovementioned conditions. This modification results in an enhancement of the photocurrent response for all hematite electrodes investigated and attains the highest values of around 1.62 and 2.3 mA cm(-2) at 1.23 and 1.4 V versus RHE, respectively, for electrodes obtained in short synthesis times (2 h). Contact angle measurements suggest that the deposition of Sn(4+) on the hematite electrode provides a more hydrophilic surface, which favors a chemical reaction at the interface between the electrode and electrolyte. This result generates new perspectives for understanding the deposition of Sn(4+) on the hematite electrode surface, which is in contrast with several studies previously reported; these studies state that the enhancement in photocurrent density is related to either the induction of an increased donor charge density or shift in the flat-band potential, which favors charge separation.

2.
ACS Appl Mater Interfaces ; 4(10): 5515-23, 2012 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-22992121

RESUMO

Our study describes the influence of the thermal treatment on the fundamental properties of the vertical oriented iron oxide nanorods synthesized under hydrothermal condition onto a conductor substrate. X-ray diffraction and X-ray absorption near edge structure spectra were used to investigate the phase evolution from iron oxyhydroxide (ß-FeOOH) to pure hematite phase. The formation of nanorods distributed along of substrate was observed by top-view SEM images and the rod growth preferentially oriented at the highly conductive (001) basal plane of hematite, perpendicular to the substrate. Light absorption capacity increases with the temperature of treatment and the electronic transitions (direct and indirect electronic transition) were estimated from this result. From the electrochemical measurement, the hematite/electrolyte interface was evaluated. These findings demonstrated that the temperature plays an important role on the hematite (structural, morphological, and catalytic) properties and that many influences must work in great harmony in order to produce a promising hematite photoanode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA