Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 8018, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32415089

RESUMO

Valuable female cattle are continuously subject to follicular puncture (ovum pick-up - OPU). This technique is commonly used for in-vitro embryo production, but may result in ovarian lesion. Mesenchymal stem cells (MSC) ameliorate the function of injured tissues, but their use to treat ovarian lesions in cattle has not been established. We investigated whether a local injection of MSC would reduce the negative effects of repeated OPU under acute and chronic scenarios in bovines. First, we performed four OPU sessions and injected 2.5 × 106 MSCs immediately after the 4th OPU procedure (n = 5). The treated organs (right ovary) were compared to their saline-treated counterparts (left), and presented superior production of oocytes and embryos in the three following OPU sessions (P < 0.05). Then, cows with progressive fertility loss went through three OPU sessions. Animals received MSC, saline, or MSC + FSH in both ovaries after the first OPU. In the two following OPU sessions, the MSC and MSC + FSH - treated groups failed to present any significant alteration in the number of oocytes and embryos compared to saline-treated animals. Thus, MSC have beneficial effects on the fertility of OPU-lesioned cows, but not in cows with cystic ovarian disease and chronic ovarian lesions.


Assuntos
Desenvolvimento Embrionário , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Oócitos/fisiologia , Ovário/citologia , Ovário/fisiologia , Animais , Biomarcadores , Blastocisto/citologia , Bovinos , Diferenciação Celular , Técnicas de Cultura Embrionária , Embrião de Mamíferos , Feminino , Fertilização in vitro , Perfilação da Expressão Gênica , Infertilidade Feminina/etiologia , Infertilidade Feminina/terapia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo
2.
Phytother Res ; 31(10): 1607-1613, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28816367

RESUMO

Angiogenesis is implicated in the development of a variety of pathological processes, most commonly cancer. It is essential for tumor growth and metastasis, making it an important cancer therapeutic target. Naturally occurring substances have led to the discovery of anticancer agents. Flavokawain B (FKB), a chalcone isolated from the root extracts of kava-kava plant, inhibits proliferation and causes apoptosis in vitro and in vivo of various cancer cell lines. The antimetastatic potential of FKB has also been suggested. In our study, we confirm the antiangiogenic action of FKB in vitro and, for the first time, demonstrate its strong antiangiogenic activity in vivo, using a zebrafish model. Our data show that FKB inhibits human brain endothelial cell (HUVEC) migration and tube formation even at very low and non-toxic concentrations. Moreover, FKB blocks angiogenesis process in zebrafish, with a dramatic reduction of subintestinal vein formation in a dose-dependent manner. Flavokawain B at the concentration of 2.5 µg/mL did not exhibit any toxic effects in zebrafish larvae and caused a markedly or complete obliteration of subintestinal vein formation. Our findings along with previously published data confirm that FKB may form the basis for creating an additional tool in the treatment of cancer and other neovascularization-related diseases. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Flavonoides/farmacologia , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Chalcona/farmacologia , Embrião não Mamífero/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Kava/química , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Peixe-Zebra
3.
J Cancer Sci Ther ; 5(2): 52-57, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23459697

RESUMO

Doxorubicin (Dox) is one of the most effective chemotherapeutic agents; however, it causes dose-dependent cardiotoxicity. Evaluation of left ventricular function relies on measurements based on M-mode echocardiography. A new technique based on quantification of myocardial motion and deformation, strain echocardiography, has been showed promising profile for early detection of cardiac dysfunction. Different therapy strategies, such as flavonoid plant extracts and stem cells, have been investigated to improve heart function in toxic cardiomyopathy. This work aimed to assess early cardiac function improvement after treatments with either flavonoid extract from Camellia sinensis or mesenchymal stem cells in Dox cardiotoxicity using strain echocardiography. Twenty Wistar rats were randomly assigned to four groups. They received water (control, Dox, Dox + stem cells) or 100 mg/kg C. sinensis extract (Dox + C. sinensis) via gavage, daily, for four weeks. Animals also received saline (control) or 5 mg/kg doxorubicin (Dox, Dox + C. sinensis, Dox + stem cells) via intraperitoneal injection, weekly, for four weeks. Stem cells were injected (3 × 106 cells) through tail vein prior the beginning of the experiment (Dox + stem cells). Animals were evaluated by hematological, electrocardiography, echocardiography, and histopathological examinations. Dox cardiotoxicity was only diagnosed with strain echocardiography, detecting a decrease in ventricular function. C. sinensis extract did not prevent ventricular dysfunction induced by Dox. However, strain echocardiography examination revealed that Dox cardiotoxicity was significantly suppressed in rats treated with stem cells. In conclusion, strain echocardiography was able to detect precocity signs of heart failure and stem cell therapy showed cardioprotection effect against Dox cardiotoxicity.

4.
J Cell Mol Med ; 17(5): 617-25, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23490190

RESUMO

Cardiovascular diseases are the number one cause of death globally and are projected to remain the single leading cause of death. Treatment options abounds, although efficacy is limited. Recent studies attribute discrete and ephemeral benefits to adult stem cell therapies, indicating the urge to improve stem cell based-therapy. In this study, we show that priming mesenchymal stem cells (MSC) towards cardiomyogenic lineage enhances their beneficial effects in vivo as treatment option for acute phase myocardial infarction. MSC were primed using cardiomyogenic media for 4 days, after which peak expression of key cardiomyogenic genes are reached and protein expression of Cx-43 and sarcomeric α-actinin are observed. MSC and primed MSC (pMSC) were characterized in vitro and used to treat infarcted rats immediately after left anterior descending (LAD) occlusion. Echocardiography analysis indicated that MSC-treated myocardium presented discrete improvement in function, but it also showed that pMSC treatment lead to superior beneficial results, compared with undifferentiated MSC. Seven days after cell injection, MSC and pMSC could still be detected in the myocardium. Connexin-43 expression was quantified through immunoblotting, and was superior in pMSC, indicating that this could be a possible explanation for the superior performance of pMSC therapy.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Infarto do Miocárdio/terapia , Actinina/metabolismo , Animais , Diferenciação Celular , Separação Celular , Conexina 43/metabolismo , Ecocardiografia , Proteínas de Fluorescência Verde/metabolismo , Testes de Função Cardíaca , Immunoblotting , Células-Tronco Mesenquimais/metabolismo , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos , Ratos Endogâmicos Lew , Sarcômeros/metabolismo
5.
J Tissue Sci Eng ; Suppl 11: 002, 2012 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-26207188

RESUMO

Tissue engineering strategies, based on solid/porous scaffolds, suffer from several limitations, such as ineffective vascularization, poor cell distribution and organization within scaffold, in addition to low final cell density, among others. Therefore, the search for other tissue engineering approaches constitutes an active area of investigation. Decellularized matrices (DM) present major advantages compared to solid scaffolds, such as ideal chemical composition, the preservation of vascularization structure and perfect three-dimensional structure. In the present study, we aimed to characterize and investigate murine heart decellularized matrices as biomaterials for regular and whole organ tissue engineering. Heart decellularized matrices were characterized according to: 1. DNA content, through DNA quantificationo and PCR of isolated genomic DNA; 2. Histological structure, assessed after Hematoxylin and Eosin, as well as Masson's Trichrome stainings; 3. Surface nanostructure analysis, performed, using SEM. Those essays allowed us to conclude that DM was indeed decellularized, with preserved extracellular matrix structure. Following characterization, decellularized heart slices were seeded with induced Pluripotent Stem cells (iPS). As expected, but - to the best of our knowledge - never shown before, decellularization of murine heart matrices maintained matrix biocompatibility, as iPS cells rapidly attached to the surface of the material and proliferated. Strikingly though, heart DM presented a differentiation induction effect over those cells, which lost their pluripotency markers after 7 days of culture in the DM. Such loss of differentiation markers was observed, even though bFGF containing media mTSR was used during such period. Gene expression of iPS cells cultured on DM will be further analyzed, in order to assess the effects of culturing pluripotent stem cells in decellularized heart matrices.

6.
Cell Transplant ; 19(2): 219-30, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19906330

RESUMO

In this study the time course of homing and the body distribution of systemically delivered bone marrow mesenchymal stem cells (BM-MSCs) after myocardial infarction (MI) were evaluated. BM-MSCs were isolated from Wistar rats, expanded in vitro, and their phenotypical characterization was performed by flow cytometer. Rats were randomly divided into three groups: control, sham MI, and MI. BM-MSCs (5 x 10(6)) were labeled with (99m)Tc-HMPAO and injected through the tail vein 7 days after MI. Gamma camera imaging was performed at 5, 15, 30, and 60 min after cell inoculation. Due to the (99m)Tc short half-life, cell migration and location were also evaluated in heart sections using DAPI-labeled cells 7 days after transplantation. Phenotypical characterization showed that BM-MSCs were CD90(+), CD73(+), CD54(+), and CD45(-). Five minutes after (99m)Tc-HMPAO-labeled cell injection, they were detected in various tissues. The cells migrated mainly to the lungs (approximately 70%) and, in small amounts, to the heart, kidneys, spleen, and bladder. The number of cells in the heart and lungs decreased after 60 min. MI markedly increased the amount of cells in the heart, but not in the lungs, during the period of observation (4.55 +/- 0.32 vs. 6.34 +/- 0.67% of uptake in infarcted hearts). No significant differences were observed between control and sham groups. Additionally, 7 days after DAPI-labeled cells injection, they were still detected in the heart but only in infarcted areas. These results suggest that the migration of systemically delivered BM-MSCs to the heart is time dependent and MI specifically increases BM-MSCs homing to injured hearts. However, the systemic delivery is limited by cell entrapment in the lungs.


Assuntos
Movimento Celular/fisiologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia , Infarto do Miocárdio/terapia , Miocárdio , Animais , Feminino , Células-Tronco Mesenquimais/citologia , Miocárdio/citologia , Miocárdio/patologia , Ratos , Ratos Wistar , Fatores de Tempo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA