Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 259(Pt 2): 129192, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38216013

RESUMO

Old Yellow Enzymes (OYEs) are flavin-dependent redox enzymes that promote the asymmetric reduction of activated alkenes. Due to the high importance of flavoenzymes in the metabolism of organisms, the interaction between OYEs from the parasites Trypanosoma cruzi and Leishmania braziliensis and three diterpene icetexanes (brussonol and two analogs), were evaluated in the present study, and differences in the binding mechanism and inhibition capacity of these molecules were examined. Although the aforementioned compounds showed poor and negligible activities against T. cruzi and L. braziliensis cells, respectively, the experiments with the purified enzymes indicated that the interaction occurs by divergent mechanisms. Overall, the ligands' inhibitory effect depends on their accessibility to the N5 position of the flavin's isoalloxazine ring. The results also indicated that the OYEs found in both parasites share structural similarities and showed affinities for the diterpene icetexanes in the same range. Nevertheless, the interaction between OYEs and ligands is directed by enthalpy and/or entropy in distinct ways. In conclusion, the binding site of both OYEs exhibits remarkable plasticity, and a large range of different molecules, including that can be substrates and inhibitors, can bind this site. This plasticity should be considered in drug design using OYE as a target.


Assuntos
Doença de Chagas , Leishmania braziliensis , Trypanosoma cruzi , Humanos , NADPH Desidrogenase/química , NADPH Desidrogenase/farmacologia , Doença de Chagas/parasitologia , Flavinas/farmacologia
2.
J Chem Inf Model ; 63(20): 6344-6353, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37824286

RESUMO

The folding process of multidomain proteins is a highly intricate phenomenon involving the assembly of distinct domains into a functional three-dimensional structure. During this process, each domain may fold independently while interacting with others. The folding of multidomain proteins can be influenced by various factors, including their composition, the structure of each domain, or the presence of disordered regions, as well as the surrounding environment. Misfolding of multidomain proteins can lead to the formation of nonfunctional structures associated with a range of diseases, including cancers or neurodegenerative disorders. Understanding this process is an important step for many biophysical analyses such as stability, interaction, malfunctioning, and rational drug design. One such multidomain protein is growth factor receptor-bound protein 2 (GRB2), an adaptor protein that is essential in regulating cell survival. GRB2 consists of one central Src homology 2 (SH2) domain flanked by two Src homology 3 (SH3) domains. The SH2 domain interacts with phosphotyrosine regions in other proteins, while the SH3 domains recognize proline-rich regions on protein partners during cell signaling. Here, we combined computational and experimental techniques to investigate the folding process of GRB2. Through computational simulations, we sampled the conformational space and mapped the mechanisms involved by the free energy profiles, which may indicate possible intermediate states. From the molecular dynamics trajectories, we used the energy landscape visualization method (ELViM), which allowed us to visualize a three-dimensional (3D) representation of the overall energy surface. We identified two possible parallel folding routes that cannot be seen in a one-dimensional analysis, with one occurring more frequently during folding. Supporting these results, we used differential scanning calorimetry (DSC) and fluorescence spectroscopy techniques to confirm these intermediate states in vitro. Finally, we analyzed the deletion of domains to compare our model outputs to previously published results, supporting the presence of interdomain modulation. Overall, our study highlights the significance of interdomain communication within the GRB2 protein and its impact on the formation, stability, and structural plasticity of the protein, which are crucial for its interaction with other proteins in key signaling pathways.


Assuntos
Neoplasias , Transdução de Sinais , Sequência de Aminoácidos , Proteína Adaptadora GRB2 , Fosfotirosina , Ligação Proteica , Domínios de Homologia de src
3.
Methods Mol Biol ; 2705: 135-151, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37668973

RESUMO

Protein interactions are at the essence of life. Proteins evolved not to have stable structures, but rather to be specialized in participating in a network of interactions. Every interaction involving proteins comprises the formation of an encounter complex, which may have two outcomes: (i) the dissociation or (ii) the formation of the final specific complex. Here, we present a methodology to characterize the encounter complex of the Grb2-SH2 domain with a phosphopeptide. This method can be generalized to other protein partners. It consists of the measurement of 15N CPMG relaxation dispersion (RD) profiles of the protein in the free state, which describes the residues that are in conformational exchange. We then acquire the dispersion profiles of the protein at a semisaturated concentration of the ligand. At this condition, the chemical exchange between the free and bound state leads to the observation of dispersion profiles in residues that are not in conformational exchange in the free state. This is due to fuzzy interactions that are typical of the encounter complexes. The transient "touching" of the ligand in the protein partner generates these new relaxation dispersion profiles. For the Grb2-SH2 domain, we observed a wider surface at SH2 for the encounter complex than the phosphopeptide (pY) binding site, which might explain the molecular recognition of remote phosphotyrosine. The Grb2-SH2-pY encounter complex is dominated by electrostatic interactions, which contribute to the fuzziness of the complex, but also have contribution of hydrophobic interactions.


Assuntos
Fosfopeptídeos , Domínios de Homologia de src , Ligantes , Imageamento por Ressonância Magnética , Sítios de Ligação
4.
iScience ; 26(3): 106197, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36890794

RESUMO

Nucleocapsid (NC) assembly is an essential step of the virus replication cycle. It ensures genome protection and transmission among hosts. Flaviviruses are human viruses for which envelope structure is well known, whereas no information on NC organization is available. Here we designed a dengue virus capsid protein (DENVC) mutant in which a highly positive spot conferred by arginine 85 in α4-helix was replaced by a cysteine residue, simultaneously removing the positive charge and restricting the intermolecular motion through the formation of a disulfide cross-link. We showed that the mutant self-assembles into capsid-like particles (CLP) in solution without nucleic acids. Using biophysical techniques, we investigated capsid assembly thermodynamics, showing that an efficient assembly is related to an increased DENVC stability due to α4/α4' motion restriction. To our knowledge, this is the first time that flaviviruses' empty capsid assembly is obtained in solution, revealing the R85C mutant as a powerful tool to understand the NC assembly mechanism.

5.
Antioxidants (Basel) ; 11(7)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35883729

RESUMO

Nitric oxide (NO) is a free radical with a signaling capacity. Its cellular functions are achieved mainly through S-nitrosation where thioredoxin (hTrx) is pivotal in the S-transnitrosation to specific cellular targets. In this study, we use NMR spectroscopy and mass spectrometry to follow the mechanism of S-(trans)nitrosation of hTrx. We describe a site-specific path for S-nitrosation by measuring the reactivity of each of the 5 cysteines of hTrx using cysteine mutants. We showed the interdependence of the three cysteines in the nitrosative site. C73 is the most reactive and is responsible for all S-transnitrosation to other cellular targets. We observed NO internal transfers leading to C62 S-nitrosation, which serves as a storage site for NO. C69-SNO only forms under nitrosative stress, leading to hTrx nuclear translocation.

6.
Sci Rep ; 12(1): 10601, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35732685

RESUMO

Chikungunya virus (CHIKV) is the causative agent of Chikungunya fever, an acute febrile and arthritogenic illness with no effective treatments available. The development of effective therapeutic strategies could be significantly accelerated with detailed knowledge of the molecular components behind CHIKV replication. However, drug discovery is hindered by our incomplete understanding of their main components. The RNA-dependent RNA-polymerase (nsP4-CHIKV) is considered the key enzyme of the CHIKV replication complex and a suitable target for antiviral therapy. Herein, the nsP4-CHIKV was extensively characterized through experimental and computational biophysical methods. In the search for new molecules against CHIKV, a compound designated LabMol-309 was identified as a strong ligand of the nsp4-CHIKV and mapped to bind to its active site. The antiviral activity of LabMol-309 was evaluated in cellular-based assays using a CHIKV replicon system and a reporter virus. In conclusion, this study highlights the biophysical features of nsP4-CHIKV and identifies a new compound as a promising antiviral agent against CHIKV infection.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Antivirais/uso terapêutico , Vírus Chikungunya/genética , Humanos , Ligantes , RNA/metabolismo , RNA Polimerase Dependente de RNA , Replicação Viral
7.
Virus Res ; 318: 198850, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35750131

RESUMO

The human Respiratory Syncytial Virus (hRSV) is the main causative agent of acute respiratory infections (ARI), such as pneumonia and bronchiolitis. One of the factors that lead to success in viral replication is the interaction of the M2-2 protein with the ribosomal complex. This interaction is responsible for the phase change of viral activity, acting as an inhibitor or inducer of viral replication, according to the concentration of mRNA. Based on the importance of M2-2 gene and protein have to viral physiology, we performed here evaluations of genetic diversity, phylogenetic reconstructions, phylodynamics, and selection test. Our results suggested an alternative way of classifying this virus in clades A and B, based on a new phylogenetic marker, the M2-2 gene. Therefore, our study is the first one to investigate the dynamics of the evolutionary diversification process of hRSV from the perspective of the M2-2 viral gene. In our study was also identified that the M2-2 gene is under the effect of purifying selection originated by population genetic bottlenecks. Therefore, the M2-2 gene demonstrated an interesting potential to be applied in evolutionary studies involving hRSV, recovering phylogenetic signals and traits of natural selection under the evolution of this virus.


Assuntos
Filogenia , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Genes Virais , Humanos , Infecções por Vírus Respiratório Sincicial/epidemiologia , Infecções por Vírus Respiratório Sincicial/genética , Vírus Sincicial Respiratório Humano/genética , Seleção Genética , Proteínas Virais
8.
J Enzyme Inhib Med Chem ; 37(1): 287-298, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34894959

RESUMO

We synthesised and screened 18 aromatic derivatives of guanylhydrazones and oximes aromatic for their capacity to bind to dengue virus capsid protein (DENVC). The intended therapeutic target was the hydrophobic cleft of DENVC, which is a region responsible for its anchoring in lipid droplets in the infected cells. The inhibition of this process completely suppresses virus infectivity. Using NMR, we describe five compounds able to bind to the α1-α2 interface in the hydrophobic cleft. Saturation transfer difference experiments showed that the aromatic protons of the ligands are important for the interaction with DENVC. Fluorescence binding isotherms indicated that the selected compounds bind at micromolar affinities, possibly leading to binding-induced conformational changes. NMR-derived docking calculations of ligands showed that they position similarly in the hydrophobic cleft. Cytotoxicity experiments and calculations of in silico drug properties suggest that these compounds may be promising candidates in the search for antivirals targeting DENVC.


Assuntos
Antivirais/farmacologia , Proteínas do Capsídeo/antagonistas & inibidores , Vírus da Dengue/efeitos dos fármacos , Hidrazonas/farmacologia , Oximas/farmacologia , Antivirais/síntese química , Antivirais/química , Proteínas do Capsídeo/metabolismo , Vírus da Dengue/metabolismo , Relação Dose-Resposta a Droga , Hidrazonas/síntese química , Hidrazonas/química , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Estrutura Molecular , Oximas/síntese química , Oximas/química , Relação Estrutura-Atividade
9.
J Biomol Struct Dyn ; 40(5): 2156-2168, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33076779

RESUMO

The human Respiratory Syncytial Virus (hRSV) is one of the most common causes of acute respiratory diseases such as bronchiolitis and pneumonia in children worldwide. Among the viral proteins, the nucleoprotein (N) stands out for forming the nucleocapsid (NC) that functions as a template for replication and transcription by the viral polymerase complex. The NC/polymerase recognition is mediated by the phosphoprotein (P), which establishes an interaction of its C-terminal residues with a hydrophobic pocket in the N-terminal domain of N (N-NTD). The present study consists of biophysical characterization of N-NTD and investigation of flavonoids binding to this domain using experimental and computational approaches. Saturation transfer difference (STD)-NMR measurements showed that among the investigated flavonoids, only hesperetin (Hst) bound to N-NTD. The binding epitope mapping of Hst suggested that its fused aromatic ring is buried in the protein binding site. STD-NMR and fluorescence anisotropy experiments showed that Hst competes with P protein C-terminal dipeptides for the hRSV nucleoprotein/phosphoprotein (N/P) interaction site in N-NTD, indicating that Hst binds to the hydrophobic pocket in this domain. Computational simulations of molecular docking and dynamics corroborated with experimental results, presenting that Hst established a stable interaction with the N/P binding site. The outcomes presented herein shed light on literature reports that described a significant antireplicative activity of Hst against hRSV, revealing molecular details that can provide the development of a new strategy against this virus.


Assuntos
Vírus Sincicial Respiratório Humano , Sítios de Ligação , Criança , Hesperidina , Humanos , Simulação de Acoplamento Molecular , Nucleoproteínas/química , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Ligação Proteica , Vírus Sincicial Respiratório Humano/química , Vírus Sincicial Respiratório Humano/metabolismo
10.
Front Mol Biosci ; 8: 706002, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34307462

RESUMO

In this review, we briefly describe a theoretical discussion of protein folding, presenting the relative contribution of the hydrophobic effect versus the stabilization of proteins via direct surface forces that sometimes may be overlooked. We present NMR-based studies showing the stability of proteins lacking a hydrophobic core which in turn present hydrophobic surface clusters, such as plant defensins. Protein dynamics measurements by NMR are the key feature to understand these dynamic surface clusters. We contextualize the measurement of protein dynamics by nuclear relaxation and the information available at protein surfaces and water cavities. We also discuss the presence of hydrophobic surface clusters in multidomain proteins and their participation in transient interactions which may regulate the function of these proteins. In the end, we discuss how surface interaction regulates the reactivity of certain protein post-translational modifications, such as S-nitrosation.

11.
Curr Opin Virol ; 47: 106-112, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33721656

RESUMO

The Flaviviridae family comprises important human pathogens, including Dengue, Zika, West Nile, Yellow Fever and Japanese Encephalitis viruses. The viral genome, a positive-sense single-stranded RNA, is packaged by a single protein, the capsid protein, which is a small and highly basic protein that form intertwined homodimers in solution. Atomic-resolution structures of four flaviviruses capsid proteins were solved either in solution by nuclear magnetic resonance spectroscopy, or after protein crystallization by X-ray diffraction. Analyses of these structures revealed very particular properties, namely (i) the predominance of quaternary contacts maintaining the structure; (ii) a highly electropositive surface throughout the protein; and (iii) a flexible helix (α1). The goal of this review is to discuss the role of these features in protein structure-function relationship.


Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Flavivirus/metabolismo , Flavivirus/classificação , Humanos , Ligação Proteica , Conformação Proteica em alfa-Hélice , Estrutura Quaternária de Proteína , Eletricidade Estática , Relação Estrutura-Atividade
12.
J Virol ; 94(23)2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32938771

RESUMO

The human respiratory syncytial virus (hRSV) M2-1 protein functions as a processivity and antitermination factor of the viral polymerase complex. Here, the first evidence that the hRSV M2-1 core domain (cdM2-1) alone has an unfolding activity for long RNAs is presented and the biophysical and dynamic characterization of the cdM2-1/RNA complex is provided. The main contact region of cdM2-1 with RNA was the α1-α2-α5-α6 helix bundle, which suffered local conformational changes and promoted the RNA unfolding activity. This activity may be triggered by base-pairing recognition. RNA molecules wrap around the whole cdM2-1, protruding their termini over the domain. The α2-α3 and α3-α4 loops of cdM2-1 were marked by an increase in picosecond internal motions upon RNA binding, even though they are not directly involved in the interaction. The results revealed that the cdM2-1/RNA complex originates from a fine-tuned binding, contributing to the unraveling interaction aspects necessary for M2-1 activity.IMPORTANCE The main outcome is the molecular description of the fine-tuned binding of the cdM2-1/RNA complex and the provision of evidence that the domain alone has unfolding activity for long RNAs. This binding mode is essential in the understanding of the function in the full-length protein. Human respiratory syncytial virus (hRSV), an orthopneumovirus, stands out for the unique role of its M2-1 protein as a transcriptional antitermination factor able to increase RNA polymerase processivity.


Assuntos
RNA/química , RNA/metabolismo , Vírus Sincicial Respiratório Humano/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Sítios de Ligação , RNA Polimerases Dirigidas por DNA/metabolismo , Humanos , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Vírus Sincicial Respiratório Humano/genética , Proteínas Virais/genética
13.
Sci Rep ; 10(1): 13040, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32747626

RESUMO

The growth factor receptor-bound protein 2 (Grb2) is a key factor in the regulation of cell survival, proliferation, differentiation, and metabolism. In its structure, the central Src homology 2 (SH2) domain is flanked by two Src homology 3 (SH3). SH2 is the most important domain in the recognition of phosphotyrosines. Here, we present the first dynamical characterization of Grb2-SH2 domain in the free state and in the presence of phosphopeptide EpYINSQV at multiple timescales, which revealed valuable information to the understanding of phophotyrosine sensing mechanism. Grb2-SH2 presented two dynamically independent subdomains, subdomain I involved in pY recognition and subdomain II is the pY + 2 specificity pocket. Under semi-saturated concentrations of pY-pep we observed fuzzy interactions, which led to chemical exchange observed by NMR. This information was used to describe the encounter complex. The association with pY-pep is dynamic, involving fuzzy interactions and multiple conformations of pY-pep with negative and hydrophobic residues, creating an electrostatic-potential that drives the binding of pY-pep. The recognition face is wider than the binding site, with many residues beyond the central SH2 binding site participating in the association complex, which contribute to explain previously reported capability of Grb2 to recognize remote pY.

14.
Int J Mol Sci ; 21(6)2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32213871

RESUMO

The human Respiratory Syncytial Virus (hRSV) is the most frequent agent of respiratory infections in infants and children with no currently approved vaccine. The M2-1 protein is an important transcriptional antitermination factor and a potential target for viral replication inhibitor development. Hesperetin (HST) and hesperidin (HSD) are flavonoids from the flavanone group, naturally found in citrus and have, as one of their properties, antiviral activity. The present study reports on the interactions between hRSV M2-1 and these flavanones using experimental techniques in association with computational tools. STD-NMR results showed that HST and HSD bind to M2-1 by positioning their aromatic rings into the target protein binding site. Fluorescence quenching measurements revealed that HST had an interaction affinity greater than HSD towards M2-1. The thermodynamic analysis suggested that hydrogen bonds and van der Waals interactions are important for the molecular stabilization of the complexes. Computational simulations corroborated with the experimental results and indicated that the possible interaction region for the flavonoids is the AMP-binding site in M2-1. Therefore, these results point that HST and HSD bind stably to a critical region in M2-1, which is vital for its biological function, and thus might play a possible role antiviral against hRSV.


Assuntos
Antivirais/farmacologia , Hesperidina/farmacologia , Simulação de Acoplamento Molecular , Proteínas Virais/química , Antivirais/química , Sítios de Ligação , Hesperidina/química , Ligação Proteica , Proteínas Virais/metabolismo
15.
Chem Biol Interact ; 315: 108876, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31669340

RESUMO

4-methylesculetin (4 ME) is a natural antioxidant coumarin with protective effects on the intestinal inflammation, in which oxidative stress plays a key role in its aetiology and pathophysiology. Based on this, we examined the antioxidant molecular mechanisms involved in the intestinal anti-inflammatory activity of the 4 ME. For this purpose, we investigated the effects of the 4 ME on the modulation of gene expression and antioxidant-related enzyme activities in TNBS model of intestinal inflammation as well as the molecular interaction between 4 ME and glutathione reductase. Our results showed that 4 ME modulated glutathione-related enzymes, mainly increasing glutathione reductase activity. These effects were related to upregulation of glutathione reductase and Nrf2 gene expression. Fluorescence and nuclear magnetic resonance data showed that interaction between 4 ME and glutathione reductase is collisional, hydrophobic and spontaneous, in which C4 methyl group is the second epitope most buried into glutathione reductase. Molecular modelling calculation showed Lys70-B, Arg81-A, Glu381-B, Asp443-A, Ser444-A, Glu447-B and Ser475-A participated in electrostatic interaction, Lys70-B, Glu381-B and Arg81-A acted in the hydrophobic interactions and Trp73, Phe377 and Ala446 are responsible for the hydrogen bonds. Based on this, our results showed 4 ME acted by different mechanisms to control oxidative stress induced by intestinal damage, controlling the imbalance between myeloperoxidase activity and glutathione production, upregulating the glutathione S-transferase and glutathione reductase activities, preventing the Nrf2 and glutathione gene expression downregulation with consequent glutathione maintenance. Finally, 4 ME interacted at molecular level with glutathione reductase, stabilizing its enzymatic activity and reducing oxidative stress to take place in intestinal inflammatory process.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Cumarínicos/farmacologia , Inflamação/tratamento farmacológico , Umbeliferonas/farmacologia , Animais , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Inflamação/metabolismo , Masculino , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Peroxidase/metabolismo , Ratos , Ratos Wistar
16.
Biomol NMR Assign ; 13(2): 295-298, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31028611

RESUMO

Growth factor receptor-bound protein 2 (Grb2) is an adaptor protein composed of three domains, an N-terminal SH3 (nSH3), SH2 and a C-terminal SH3 (cSH3) domains. This multi-domain protein has been reported to be a key factor in many signaling pathways related to controlling cell survival, differentiation, and growth. The Grb2-SH2 domain has been a focus for the study of the interaction with peptides and small molecules to act as inhibitors in uncontrolled cell growth, and consequently inhibit tumor proliferation. Here we describe the almost complete assignment of the free SH2 domain at pH 7. This work prepares the ground for further structural studies, backbone dynamics, mapping of interactions and drug screening and development. TalosN secondary structure prediction showed great similarity with the available structures in the PDB.


Assuntos
Proteína Adaptadora GRB2/química , Ressonância Magnética Nuclear Biomolecular , Domínios de Homologia de src
17.
Int J Biol Macromol ; 111: 33-38, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29292149

RESUMO

The human Respiratory Syncytial Virus (hRSV) is the main responsible for occurrences of respiratory diseases as pneumonia and bronchiolitis in children and elderly. M2-1 protein from hRSV is an important antitermination factor for transcription process that prevents the premature dissociation of the polymerase complex, making it a potential target for developing of inhibitors of the viral replication. The present study reports the interaction of the M2-1 tetramer with pera (Q1) and tetracetylated (Q2) quercetin derivatives, which were synthesized with the objective of generating stronger bioactive compounds against oxidation process. Fluorescence experiments showed binding constants of the M2-1/compounds complexes on order of 104M-1 with one ligand per monomeric unit, being the affinity of Q2 stronger than Q1. The thermodynamic analysis revealed values of ΔH>0 and ΔS>0, suggesting that hydrophobic interactions play a key role in the formation of the complexes. Molecular docking calculations indicated that binding sites for the compounds are in contact interfaces between globular and zinc finger domains of the monomers and that hydrogen bonds and stacking interactions are important contributions for stabilization of the complexes. Thus, the interaction of the acetylated quercetin derivatives in the RNA-binding sites of M2-1 makes these potential candidates for viral replication inhibitors.


Assuntos
Quercetina/química , Vírus Sincicial Respiratório Humano/química , Proteínas Virais/química , Acetilação , Sítios de Ligação , Humanos , Simulação de Acoplamento Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Espectroscopia de Prótons por Ressonância Magnética , Vírus Sincicial Respiratório Humano/genética , Termodinâmica , Replicação Viral/genética
18.
FEBS J ; 285(2): 372-390, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29197185

RESUMO

Cold shock proteins (Csps) function to preserve cell viability at low temperatures by binding to nucleic acids and consequently control gene expression. The mesophilic bacterium Corynebacterium pseudotuberculosis is the causative agent of caseous lymphadenitis in animals, and infection in livestock is a considerable economic burden worldwide. In this report, the structure of cold shock protein A from Cp (Cp-CspA) and biochemical analysis of its temperature-dependent interaction with a Y-box ssDNA motif is presented. The Cp-CspA structure contains five ß-strands making up a ß-barrel fold with 11 hydrophobic core residues and two salt bridges that confers it with a melting temperature of ~ 54 °C that is similar to mesophilic Bs-CspB. Chemical shift perturbations analysis revealed that residues in the nucleic acid-binding motifs (RNP 1 and 2) and loop 3 are involved in binding to the Y-box fragment either by direct interaction or by conformational rearrangements remote from the binding region. Fluorescence quenching experiments of Cp-CspA showed that the dissociation constants for Y-box ssDNA binding is nanomolar and the binding affinity decreased as the temperature increased, indicating that the interaction is enthalpically driven and the hydrogen bonds and van der Waals forces are important contributions for complex stabilization. The Y31 of Cp-CspA is a particular occurrence among Csps from mesophilic bacteria that provide a possible explanation for the higher binding affinity to ssDNA than that observed for Bs-CspB. Anisotropy measurements indicated that the reduction in molecular mobility of Cp-CspA upon Y-box binding is characterized by a cooperative process. DATABASE: Resonance assignment and structural data are available in the Biological Magnetic Resonance Data Bank and Protein Data Bank under accession number 26802 and 5O6F, respectively.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas e Peptídeos de Choque Frio/química , Proteínas e Peptídeos de Choque Frio/metabolismo , Corynebacterium pseudotuberculosis/metabolismo , DNA de Cadeia Simples/metabolismo , Sequência de Aminoácidos , Varredura Diferencial de Calorimetria , Biologia Computacional , Polarização de Fluorescência , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Homologia de Sequência de Aminoácidos
19.
Biochem Biophys Res Commun ; 467(1): 171-7, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26299923

RESUMO

Exfoliative toxins are serine proteases secreted by Staphylococcus aureus that are associated with toxin-mediated staphylococcal syndromes. To date, four different serotypes of exfoliative toxins have been identified and 3 of them (ETA, ETB, and ETD) are linked to human infection. Among these toxins, only the ETD structure remained unknown, limiting our understanding of the structural determinants for the functional differentiation between these toxins. We recently identified an ETD-like protein associated to S. aureus strains involved in mild mastitis in sheep. The crystal structure of this ETD-like protein was determined at 1.95 Å resolution and the structural analysis provide insights into the oligomerization, stability and specificity and enabled a comprehensive structural comparison with ETA and ETB. Despite the highly conserved molecular architecture, significant differences in the composition of the loops and in both the N- and C-terminal α-helices seem to define ETD-like specificity. Molecular dynamics simulations indicate that these regions defining ET specificity present different degrees of flexibility and may undergo conformational changes upon substrate recognition and binding. DLS and AUC experiments indicated that the ETD-like is monomeric in solution whereas it is present as a dimer in the asymmetric unit indicating that oligomerization is not related to functional differentiation among these toxins. Differential scanning calorimetry and circular dichroism assays demonstrated an endothermic transition centered at 52 °C, and an exothermic aggregation in temperatures up to 64 °C. All these together provide insights about the mode of action of a toxin often secreted in syndromes that are not associated with either ETA or ETB.


Assuntos
Exfoliatinas/química , Exfoliatinas/toxicidade , Staphylococcus aureus/química , Staphylococcus aureus/patogenicidade , Animais , Cristalografia por Raios X , Exfoliatinas/classificação , Feminino , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , Ovinos , Infecções Estafilocócicas/etiologia , Infecções Estafilocócicas/microbiologia , Eletricidade Estática , Homologia Estrutural de Proteína , Síndrome
20.
Protein Expr Purif ; 112: 15-20, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25907380

RESUMO

The gram-positive bacterium Corynebacterium pseudotuberculosis is the causative agent of different diseases that cause dramatically reduced yields of wool and milk, and results in weight loss, carcass condemnation and also death mainly in sheep, equids, cattle and goats and therefore globally results in considerable economical loss. Cold shock proteins are conserved in many bacteria and eukaryotic cells and they help to restore normal cell functions after cold shock in which some appear to have specific functions at normal growth temperature as well. Cold shock protein A from C. pseudotuberculosis was expressed in Escherichia coli and purified. The thermal unfolding/refolding process characterized by circular dichroism, differential scanning calorimetry and NMR spectroscopy techniques indicated that the refolding process was almost completely reversible.


Assuntos
Proteínas e Peptídeos de Choque Frio/química , Proteínas e Peptídeos de Choque Frio/genética , Corynebacterium pseudotuberculosis/genética , Sequência de Aminoácidos , Animais , Bovinos , Dicroísmo Circular , Clonagem Molecular , Proteínas e Peptídeos de Choque Frio/isolamento & purificação , Infecções por Corynebacterium/microbiologia , Infecções por Corynebacterium/veterinária , Escherichia coli/genética , Cabras , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Desnaturação Proteica , Redobramento de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Alinhamento de Sequência , Ovinos , Temperatura de Transição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA