RESUMO
Here we report the presence of the entomopathogenic nematode Rhabditis (Rhabditoides) regina affecting white grubs (Phyllophaga sp. and Anomala sp.) in Mexico and R. regina-associated bacteria. Bioassays were performed to test the entomopathogenic capacity of dauer and L2 and L3 (combined) larval stages. Furthermore, we determined the diversity of bacteria from laboratory nematodes cultivated for 2 years (dauer and L2-L3 larvae) and from field nematodes (dauer and L2-L3 larvae) in addition to the virulence in Galleria mellonella larvae of some bacterial species from both laboratory and field nematodes. Dauer and non-dauer larvae of R. regina killed G. mellonella. Bacteria such as Serratia sp. (isolated from field nematodes) and Klebsiella sp. (isolated from larvae of laboratory and field nematodes) may explain R. regina entomopathogenic capabilities. Different bacteria were found in nematodes after subculturing in the laboratory suggesting that R. regina may acquire bacteria in different environments. However, there were some consistently found bacteria from laboratory and field nematodes such as Pseudochrobactrum sp., Comamonas sp., Alcaligenes sp., Klebsiella sp., Acinetobacter sp., and Leucobacter sp. that may constitute the nematode microbiome. Results showed that some bacteria contributing to entomopathogenicity may be lost in the laboratory representing a disadvantage when nematodes are cultivated to be used for biological control.
Assuntos
Bactérias/isolamento & purificação , Besouros/parasitologia , Microbiota , Mariposas/parasitologia , Rhabditoidea/microbiologia , Animais , Bactérias/genética , Bactérias/patogenicidade , Klebsiella/genética , Klebsiella/isolamento & purificação , Klebsiella/patogenicidade , Larva , México , Filogenia , Análise de Sequência de DNA , Serratia/genética , Serratia/isolamento & purificação , Serratia/patogenicidade , VirulênciaRESUMO
Trade-offs are a central tenet in the life-history evolution and the simplest model to understand it is the "Y" model: the investment of one arm will affect the investment of the other arm. However, this model is by far more complex, and a "branched Y-model" is proposed: trade-offs could exist within each arm of the Y, but the mechanistic link is unknown. Here we used Tenebrio molitor to test if Juvenile Hormone (JH) could be a mechanistic link behind the "branched Y-model". Larvae were assigned to one of the following experimental groups: (1) low, (2) medium and (3) high doses of methoprene (a Juvenile Hormone analogue, JHa), (4) acetone (methoprene diluents; control one) or (5) näive (handled in the same way as other groups; control two). The JHa lengthened the time of development from larvae to pupae and larvae to adults, resulting in adults with a larger size. Males with medium and long JHa treatment doses were favored with female choice, but had smaller testes and fewer viable sperm. There were no differences between groups in regard to the number of spermatozoa of males, or the number of ovarioles or eggs of females. This results suggest that JH: (i) is a mechanistic link of insects "branched Y model", (ii) is a double ended-sword because it may not only provide benefits on reproduction but could also impose costs, and (iii) has a differential effect on each sex, being males more affected than females.