Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Virol ; 168(2): 70, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36658439

RESUMO

Zika virus (ZIKV) is an arbovirus that was responsible for multiple outbreaks from 2007 to 2015. It has been linked to cases of microcephaly in Brazil in 2015, among other neurological disorders. Differences among strains might be the reason for different clinical outcomes of infection. To evaluate this hypothesis, we performed a comparative proteomic analysis of Vero cells infected with the African strain MR766 (ZIKVAFR) and the Brazilian strain 17 SM (ZIKVBR). A total of 550 proteins were identified as differentially expressed in ZIKVAFR- or ZIKVBR-infected cells compared to the control. The main findings included upregulation of immune system pathways (neutrophil degranulation and adaptive/innate immune system) and potential activation of immune-system-related pathways by ZIKVAFR (mTOR, JAK-STAT, NF-κB, and others) compared with the ZIKVBR/control. In addition, phagocytosis by macrophages and engulfment of leukocytes were activated in ZIKVAFR infection. An in vivo analysis using an immunocompetent C57BL/6N mouse model identified interstitial pneumonia with neutrophil infiltration in the lungs only in mice infected with ZIKVBR at 48 hours postinfection, with a significant amount of virus detected. Likewise, only animals infected with ZIKVBR had viral material in the cytoplasm of lung macrophages. These results suggest that activation of the immune system by ZIKVAFR infection may lead to faster viral clearance by immune cells.


Assuntos
Evasão da Resposta Imune , Infecção por Zika virus , Zika virus , Animais , Camundongos , Brasil , Chlorocebus aethiops , Camundongos Endogâmicos C57BL , Proteômica , Células Vero , Zika virus/fisiologia , Infecção por Zika virus/imunologia
2.
J Proteome Res ; 18(11): 3885-3895, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31502459

RESUMO

Cryptococcus gattii is the causative agent of cryptococcosis infection that can lead to pneumonia and meningitis in immunocompetent individuals. The molecular basis of the pathogenic process and impact on the host biochemistry are poorly understood and remain largely unknown. In this context, a comparative proteomic analysis was performed to investigate the response of the host during an infection caused by C. gattii. Lungs of experimentally infected rats were analyzed by shotgun proteomics to identify differentially expressed proteins induced by C. gattii clinical strain. The proteomic results were characterized using bioinformatic tools, and subsequently, the molecular findings were validated in cell culture and lungs of infected animals. A dramatic change was observed in protein expression triggered by C. gattii infection, especially related to energy metabolism. The main pathways affected include aerobic glycolysis cycle, TCA cycle, and pyrimidine and purine metabolism. Analyses in human lung fibroblast cells confirmed the altered metabolic status found in infected lungs. Thus, it is clear that C. gattii infection triggers important changes in energy metabolism leading to the activation of glycolysis and lactate accumulation in lung cells, culminating in a cancerlike metabolic status known as the Warburg effect. The results presented here provide important insights to better understand C. gattii molecular pathogenesis.


Assuntos
Criptococose/metabolismo , Metabolismo Energético/fisiologia , Glicólise/fisiologia , Pulmão/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Animais , Linhagem Celular , Criptococose/microbiologia , Cryptococcus gattii/fisiologia , Modelos Animais de Doenças , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Pulmão/microbiologia , Masculino , Ratos Wistar
3.
BMC Genomics ; 20(1): 152, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30791886

RESUMO

BACKGROUND: Triple negative breast cancer (TNBC) is a malignancy with very poor prognosis, due to its aggressive clinical characteristics and lack of response to receptor-targeted drug therapy. In TNBC, immune-related pathways are typically upregulated and may be associated with a better prognosis of the disease, encouraging the pursuit for immunotherapeutic options. A number of immune-related molecules have already been associated to the onset and progression of breast cancer, including NOD1 and NOD2, innate immune receptors of bacterial-derived components which activate pro-inflammatory and survival pathways. In the context of TNBC, overexpression of either NOD1or NOD2 is shown to reduce cell proliferation and increase clonogenic potential in vitro. To further investigate the pathways linking NOD1 and NOD2 signaling to tumorigenesis in TNBC, we undertook a global proteome profiling of TNBC-derived cells ectopically expressing each one of these NOD receptors. RESULTS: We have identified a total of 95 and 58 differentially regulated proteins in NOD1- and NOD2-overexpressing cells, respectively. We used bioinformatics analyses to identify enriched molecular signatures aiming to integrate the differentially regulated proteins into functional networks. These analyses suggest that overexpression of both NOD1 and NOD2 may disrupt immune-related pathways, particularly NF-κB and MAPK signaling cascades. Moreover, overexpression of either of these receptors may affect several stress response and protein degradation systems, such as autophagy and the ubiquitin-proteasome complex. Interestingly, the levels of several proteins associated to cellular adhesion and migration were also affected in these NOD-overexpressing cells. CONCLUSIONS: Our proteomic analyses shed new light on the molecular pathways that may be modulating tumorigenesis via NOD1 and NOD2 signaling in TNBC. Up- and downregulation of several proteins associated to inflammation and stress response pathways may promote activation of protein degradation systems, as well as modulate cell-cycle and cellular adhesion proteins. Altogether, these signals seem to be modulating cellular proliferation and migration via NF-κB, PI3K/Akt/mTOR and MAPK signaling pathways. Further investigation of altered proteins in these pathways may provide more insights on relevant targets, possibly enabling the immunomodulation of tumorigenesis in the aggressive TNBC phenotype.


Assuntos
Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD2/genética , Proteoma , Proteômica , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Proliferação de Células , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Humanos , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Proteômica/métodos , Transcriptoma , Neoplasias de Mama Triplo Negativas/patologia
4.
Mol Neurobiol ; 56(7): 4708-4717, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30377986

RESUMO

The recent microcephaly outbreak in Brazil has been associated with Zika virus (ZIKV) infection. The current understanding of damage caused by ZIKV infection is still unclear, since it has been implicated in other neurodegenerative and developmental complications. Here, the differential proteome analysis of human mesenchymal stem cells (hMSC) infected with a Brazilian strain of ZIKV was identified by shotgun proteomics (MudPIT). Our results indicate that ZIKV induces a potential reprogramming of the metabolic machinery in nucleotide metabolism, changes in the energy production via glycolysis and other metabolic pathways, and potentially inhibits autophagy, neurogenesis, and immune response by downregulation of signaling pathways. In addition, proteins previously described in several brain pathologies, such as Alzheimer's disease, autism spectrum disorder, amyotrophic lateral sclerosis, and Parkinson's disease, were found with altered expression due to ZIKV infection in hMSC. This potential link between ZIKV and several neuropathologies beyond microcephaly is being described here for the first time and can be used to guide specific follow-up studies concerning these specific diseases and ZIKV infection.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Doenças do Sistema Nervoso/patologia , Doenças do Sistema Nervoso/virologia , Infecção por Zika virus/metabolismo , Infecção por Zika virus/patologia , Zika virus/fisiologia , Adulto , Feminino , Humanos , Proteoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA