Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525659

RESUMO

Embryonic lipids are crucial for the formation of cellular membranes and dynamically participate in metabolic pathways. Cells can synthesize simple fatty acids, and the elongation of fatty acids facilitates the formation of complex lipids. The aim of this work was to investigate the involvement of the elongation of very long chain fatty acid enzyme 5 (ELOVL5) in embryonic development and lipid determination. Bovine embryos were produced in vitro using a standard protocol and randomly divided to receive one of three treatments at Day 4: morpholino (Mo) gene expression knockdown assay for ELOVL5 (ELOVL5-Mo), Mo antisense oligonucleotides for the thalassemic ß-globulin human mRNA (technical control Mo), and placebo (biological control). The phenotypes of embryonic development, cell number, ELOVL5 protein abundance, lipid droplet deposits, and lipid fingerprint were investigated. No detrimental effects (p > 0.05) were observed on embryo development in terms of cleavage (59.4 ± 3.5%, 63.6 ± 4.1%, and 65.4 ± 2.2%), blastocyst production (31.3 ± 4.2%, 28.1 ± 4.9%, and 36.1 ± 2.1%), and blastocyst cell number (99.6 ± 7.7, 100.2 ± 6.2, 86.8 ± 5.6), respectively, for biological control, technical control Mo, and ELOVL5-Mo. ELOVL5 protein abundance and cytoplasmic lipid droplet deposition were increased (p < 0.05) in ELOVL5-Mo-derived blastocysts compared with the controls. However, seven lipid species, including phosphatidylcholines, phosphatidylethanolamines, and triacylglycerol, were downregulated in the ELOVL5-Mo-derived blastocysts compared with the biological control. Therefore, ELOVL5 is involved in the determination of embryonic lipid content and composition. Transient translational blockage of ELOVL5 reduced the expression of specific lipid species and promoted increased cytoplasmic lipid droplet deposition, but with no apparent deleterious effect on embryonic development and blastocyst cell number.


Assuntos
Blastocisto/metabolismo , Membrana Celular/química , Citoplasma/química , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Animais , Blastocisto/química , Bovinos , Desenvolvimento Embrionário , Elongases de Ácidos Graxos/antagonistas & inibidores , Feminino , Técnicas de Silenciamento de Genes , Humanos , Metabolismo dos Lipídeos , Morfolinos/farmacologia , Gravidez , Globinas beta/antagonistas & inibidores , Globinas beta/genética
2.
PLoS One ; 14(8): e0220731, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31381602

RESUMO

In this study, we evaluated the modulation effect of long-chain Acyl-CoA synthetase during early embryo development. Bovine embryos were cultured in four groups: positive modulation (ACS+) with GW3965 hydrochloride, negative modulation (ACS-) with Triacsin C, association of both modulators (ACS±), and control. Embryo development rates were not altered (P>0.05) by treatments. Embryonic cytoplasmic lipid content increased in ACS+ but reduced in ACS- compared to the control (P < 0.05), whereas the membrane phospholipids profile was not altered by treatments. The total number of blastomeres did not differ (P > 0.05) between groups; however, an increased apoptotic cells percentage was found in ACS- compared to control. Twenty-four hours after warming, ACS+ and control grade I embryos presented the best hatching rates, whereas the ACS+ group equaled the hatching rates between their embryos of grades I, II and III 48 hours after warming. The relative abundance of transcripts for genes associated with lipid metabolism (ACSL3, ACSL6, ACAT1, SCD, and AUH), heatshock (HSP90AA1 and HSF1), oxidative stress (GPX4), and angiogenesis (VEGF), among other important genes for embryo development were affected by at least one of the treatments. The treatments were effective in modulating the level of transcripts for ACSL3 and the cytoplasmic lipid content. The ACS- was not effective in increasing embryonic cryosurvival, whereas ACS+ restored survival rates after vitrification of embryos with low quality, making them equivalent to embryos of excellent quality.


Assuntos
Bovinos/embriologia , Coenzima A Ligases/metabolismo , Metabolismo dos Lipídeos , Animais , Bovinos/genética , Bovinos/metabolismo , Criopreservação/métodos , Técnicas de Cultura Embrionária/métodos , Desenvolvimento Embrionário , Feminino , Fertilização in vitro/métodos , Gotículas Lipídicas/metabolismo , Fosfolipídeos/metabolismo , Transcriptoma , Vitrificação
3.
Anim. Reprod. ; 16(3): 423-439, 2019. ilus, tab, graf
Artigo em Inglês | VETINDEX | ID: vti-22352

RESUMO

Global cattle genetic market is experiencing a change of strategy, large genetic companies, traditionally recognized in the artificial insemination field, have also begun to operate in the embryo market. Consequently, the demand for in vitro produced (IVP) embryos has grown. However, the overall efficiency of the biotechnology process remains low. Additionally, the lack of homogeneity of post-cryopreservation survival results of IVP embryos still impairing a massive dissemination of this biotechnology in the field. A great challenge for in vitro production labs is to increase the amount of embryos produced with exceptional quality after each round of in vitro fertilization. Herein, we discuss the molecular and cellular features associated with the competence and cryosurvival of IVP embryos. First, morphofunctional, cellular and molecular competence of the embryos were addressed and a relationship between embryo developmental ability and quality were established with cryosurvival and pregnancy success. Additionally, determinant factors of embryo competence and cryosurvival were discussed including the following effects: genotype, oocyte quality and follicular microenvironment, in vitro production conditions, and lipids and other determining molecules. Finally, embryo cryopreservation aspects were addressed and an embryofocused approach to improve cryosurvival was presented.(AU)


Assuntos
Animais , Feminino , Bovinos , Criopreservação/métodos , Criopreservação/veterinária , Transferência Embrionária/classificação , Transferência Embrionária/tendências , Transferência Embrionária/veterinária
4.
Anim. Reprod. (Online) ; 16(3): 423-439, 2019. ilus, tab, graf
Artigo em Inglês | VETINDEX | ID: biblio-1461452

RESUMO

Global cattle genetic market is experiencing a change of strategy, large genetic companies, traditionally recognized in the artificial insemination field, have also begun to operate in the embryo market. Consequently, the demand for in vitro produced (IVP) embryos has grown. However, the overall efficiency of the biotechnology process remains low. Additionally, the lack of homogeneity of post-cryopreservation survival results of IVP embryos still impairing a massive dissemination of this biotechnology in the field. A great challenge for in vitro production labs is to increase the amount of embryos produced with exceptional quality after each round of in vitro fertilization. Herein, we discuss the molecular and cellular features associated with the competence and cryosurvival of IVP embryos. First, morphofunctional, cellular and molecular competence of the embryos were addressed and a relationship between embryo developmental ability and quality were established with cryosurvival and pregnancy success. Additionally, determinant factors of embryo competence and cryosurvival were discussed including the following effects: genotype, oocyte quality and follicular microenvironment, in vitro production conditions, and lipids and other determining molecules. Finally, embryo cryopreservation aspects were addressed and an embryofocused approach to improve cryosurvival was presented.


Assuntos
Feminino , Animais , Bovinos , Criopreservação/métodos , Criopreservação/veterinária , Transferência Embrionária/classificação , Transferência Embrionária/tendências , Transferência Embrionária/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA