Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38732387

RESUMO

Staphylococcus aureus infections are prevalent in healthcare and community environments. Methicillin-resistant S. aureus is catalogued as a superbug of high priority among the pathogens. This Gram-positive coccus can form biofilms and produce toxins, leading to persistent infection and antibiotic resistance. Limited effective antibiotics have encouraged the development of innovative strategies, with a particular emphasis on resistance mechanisms and/or virulence factors. Medicinal aromatic plants have emerged as promising alternative sources. This study investigated the antimicrobial, antibiofilm, and antihemolysis properties of three different chemotypes of Lippia origanoides essential oil (EO) against susceptible and drug-resistant S. aureus strains. The chemical composition of the EO was analyzed using GC-MS, revealing high monoterpene concentrations, with carvacrol and thymol as the major components in two of the chemotypes. The third chemotype consisted mainly of the sesquiterpene ß-caryophyllene. The MIC values for the two monoterpene chemotypes ranged from 62.5 to 500 µg/mL for all strains, whereas the sesquiterpene chemotype showed activity against seven strains at concentrations of 125-500 µg/mL, which is the first report of its anti-S. aureus activity. The phenolic chemotypes inhibited biofilm formation in seven S. aureus strains, whereas the sesquiterpene chemotype only inhibited biofilm formation in four strains. In addition, phenolic chemotypes displayed antihemolysis activity, with IC50 values ranging from 58.9 ± 3.8 to 128.3 ± 9.2 µg/mL. Our study highlights the importance of L. origanoides EO from the Yucatan Peninsula, which has the potential for the development of anti-S. aureus agents.

2.
J Chem Ecol ; 49(7-8): 408-417, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37097511

RESUMO

Propolis is used by corbiculated bees to protect the bee hive; it is mostly used to seal cracks, to reduce or prevent microbial growth and to embalm invaders. Different factors have been reported to influence the chemical composition of propolis, including bee species and the flora surrounding the hive. Nevertheless, the majority of the studies are focused on propolis produced by Apis mellifera, while studies on the chemical composition of propolis produced by stingless bees are still limited. In this investigation, the chemical composition of 27 propolis samples collected in the Yucatan Peninsula from A. mellifera beehives, together with 18 propolis samples from six different species of stingless bees, were analyzed by GC-MS. Results showed that lupeol acetate and ß-amyrin were the characteristic triterpenes in propolis samples from A. mellifera, while grandiflorenic acid and its methyl ester were the main metabolites present in samples from stingless bees. Multivariate analyses were used to explore the relationship between bee species and botanical sources on the chemical composition of the propolis samples. Differences in body size and, therefore, foraging abilities, as well as preferences for specific botanical sources among bee species, could explain the observed variation in propolis chemical composition. This is the first report on the composition of propolis samples from the stingless bees Trigona nigra, Scaptotrigona pectoralis, Nannotrigona perilampoides, Plebeia frontalis and Partamona bilineata.


Assuntos
Ascomicetos , Própole , Animais , Própole/química , México , Cromatografia Gasosa-Espectrometria de Massas , Análise Multivariada
3.
PeerJ ; 9: e12164, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721958

RESUMO

Nutrition is vital for health and immune function in honey bees (Apis mellifera). The effect of diets enriched with bee-associated yeasts and essential oils of Mexican oregano (Lippia graveolens) was tested on survival, food intake, accumulated fat body tissue, and gene expression of vitellogenin (Vg), prophenoloxidase (proPO) and glucose oxidase (GOx) in newly emerged worker bees. The enriched diets were provided to bees under the premise that supplementation with yeasts or essential oils can enhance health variables and the expression of genes related to immune function in worker bees. Based on a standard pollen substitute, used as a control diet, enriched diets were formulated, five with added bee-associated yeasts (Starmerella bombicola, Starmerella etchellsii, Starmerella bombicola 2, Zygosaccharomyces mellis, and the brewers' yeast Saccharomyces cerevisiae) and three with added essential oils from L. graveolens (carvacrol, thymol, and sesquiterpenes). Groups of bees were fed one of the diets for 9 or 12 days. Survival probability was similar in the yeast and essential oils treatments in relation to the control, but median survival was lower in the carvacrol and sesquiterpenes treatments. Food intake was higher in all the yeast treatments than in the control. Fat body percentage in individual bees was slightly lower in all treatments than in the control, with significant decreases in the thymol and carvacrol treatments. Expression of the genes Vg, proPO, and GOx was minimally affected by the yeast treatments but was adversely affected by the carvacrol and thymol treatments.

4.
Chem Biodivers ; 11(7): 1010-21, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25044587

RESUMO

Mexican oregano (Lippia graveolens) is an important aromatic plant, mainly used as flavoring and usually harvested from non-cultivated populations. Mexican oregano essential oil showed important variation in the essential-oil yield and composition. The composition of the essential oils extracted by hydrodistillation from 14 wild populations of L. graveolens growing along an edaphoclimatic gradient was evaluated. Characterization of the oils by GC-FID and GC/MS analyses allowed the identification of 70 components, which accounted for 89-99% of the total oil composition. Principal component and hierarchical cluster analyses divided the essential oils into three distinct groups with contrasting oil compositions, viz., two phenolic chemotypes, with either carvacrol (C) or thymol (T) as dominant compounds (contents >75% of the total oil composition), and a non-phenolic chemotype (S) dominated by oxygenated sesquiterpenes. While Chemotype C was associated with semi-arid climate and shallower and rockier soils, Chemotype T was found for plants growing under less arid conditions and in deeper soils. The plants showing Chemotype S were more abundant in subhumid climate. High-oil-yield individuals (>3%) were identified, which additionally presented high percentages of either carvacrol or thymol; these individuals are of interest, as they could be used as parental material for scientific and commercial breeding programs.


Assuntos
Lippia/química , Óleos Voláteis/química , Análise por Conglomerados , Cromatografia Gasosa-Espectrometria de Massas , Fenóis/análise , Análise de Componente Principal , Sesquiterpenos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA