Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomater Sci Polym Ed ; 35(14): 2170-2203, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38913549

RESUMO

A key strategy in enhancing the efficacy of collagen-based hydrogels involves incorporating polysaccharides, which have shown great promise for wound healing. In this study, semi-interpenetrating polymeric network (semi-IPN) hydrogels comprised of collagen (Col) with the macrocyclic oligosaccharide ß-cyclodextrin (ß-CD) (20-80 wt.%) were synthesised. Fourier-transform infrared (FTIR) spectroscopy confirmed the successful fabrication of these Col/ß-CD hydrogels, evidenced by the presence of characteristic absorption bands, including the urea bond band at ∼1740 cm-1, related with collagen crosslinking. Higher ß-CD content was associated with increased crosslinking, higher swelling, and faster gelation. The ß-CD content directly influenced the morphology and semi-crystallinity. All Col/ß-CD hydrogels displayed superabsorbent properties, enhanced thermal stability, and exhibited slow degradation rates. Mechanical properties were significantly improved with contents higher than ß-CD 40 wt.%. These hydrogels inhibited the growth of Escherichia coli bacteria and facilitated the controlled release of agents, such as malachite green, methylene blue, and ketorolac. The chemical composition of the Col/ß-CD hydrogels did not induce cytotoxic effects on monocytes and fibroblast cells. Instead, they actively promoted cellular metabolic activity, encouraging cell growth and proliferation. Moreover, cell signalling modulation was observed, leading to changes in the expression of TNF-α and IL-10 cytokines. In summary, the results of this research indicate that these novel hydrogels possess multifunctional characteristics, including biocompatibility, super-swelling capacity, good thermal, hydrolytic, and enzymatic degradation resistance, antibacterial activity, inflammation modulation, and the ability to be used for controlled delivery of therapeutic agents, indicating high potential for application in advanced wound dressings.


Assuntos
Antibacterianos , Bandagens , Colágeno , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Escherichia coli , Hidrogéis , beta-Ciclodextrinas , Hidrogéis/química , Hidrogéis/farmacologia , beta-Ciclodextrinas/química , Antibacterianos/farmacologia , Antibacterianos/química , Preparações de Ação Retardada/química , Colágeno/química , Escherichia coli/efeitos dos fármacos , Humanos , Cicatrização/efeitos dos fármacos , Inflamação/tratamento farmacológico , Animais , Camundongos
2.
Biomed Mater ; 18(3)2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37001533

RESUMO

The design of hydrogels based on natural polymers that have modulation of antibacterial capacity, ideal performance in release capacity of encapsulated drugs, and desired bioactivity for applications in wound healing represents a modern trend in biomaterials. In this work, novel hydrogels of semi-interpenetrating polymeric networks based on collagen and xanthan gum (XG) were investigated. The linear chains of XG can semi-interpenetrate inside to matrix of crosslinked collagen with polyurethane under physiological conditions, generating amorphous surfaces with fibrillar-granular reliefs that have accelerated gelation time (about 15 min), super water absorption (up to 3100%) and high inhibition capacity of pathogenic bacteria such asEscherichia coli(up to 100% compared to amoxicillin at 20 ppm). The increment of XG in the hydrogel (up to 20 wt.%) allows for improvement in the storage module, resistance to thermal degradation, slow the rate of hydrolytic and proteolytic degradation, allowing to encapsulate and controlled release of molecules such as ketorolac and methylene blue; besides, it shows to keep the metabolic activity of fibroblasts and monocytes at 48 h of evaluation, without observing cytotoxic effects. The bioactivity of these hydrogels is improved since they have excellent hemocompatibility and enhanced cell proliferation. Specifically, the hydrogel with 20 wt.% of XG shows to decrease the production of tumor necrosis factor-αand CCL-2 cytokines, increasing the production of transforming growth factor-ßin human monocytes, which could be used to modulate inflammation and regenerative capacity in wound healing strategies.


Assuntos
Colágeno , Hidrogéis , Humanos , Liberação Controlada de Fármacos , Hidrogéis/farmacologia , Colágeno/farmacologia , Cicatrização , Polímeros/farmacologia , Antibacterianos/farmacologia
3.
Prog Biomater ; 12(1): 25-40, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36346576

RESUMO

The preparation of hydrogels based on biopolymers like collagen and gum arabic gives a chance to provide novel options that can be used in biomedical field. Through a polymeric semi-interpenetration technique, collagen-based polymeric matrices can be associated with gum arabic while controlling its physicochemical and biological properties. To create novel hydrogels with their potential use in the treatment of wounds, the semi-interpenetration process, altering the concentration (0-40% by wt) of gum arabic in a collagen matrix is explored. The ability of gum arabic to create intermolecular hydrogen bonds in the collagen matrix enables the development of semi-interpenetrating polymeric networks (semi-IPN)-based hydrogels with a faster gelation time and higher crosslinking. Amorphous granular surfaces with linked porosity are present in matrices with 30% (by wt) of gum arabic, enhancing the storage modulus and thermal degradation resistance. The hydrogels swell to very high extent in hydrolytic and proteolytic environments, good hemocompatibility, and suppression of growth of pathogens like E. coli, and all it is enhanced by gum arabic included them, in addition to enabling the controlled release of ketorolac. The chemical composition of theses semi-IPN matrices have no deleterious effects on monocytes or fibroblasts, promoting their proliferation, and lowering alpha tumor necrosis factor (α-TNF) secretion in human monocytes.

4.
Water Environ Res ; 94(9): e10785, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36112044

RESUMO

In this work, we report the synthesis of a biobased hydrogel comprised of collagen, chitosan, and polyurethane for the removal of textile dyes. The adsorption capacity of this hydrogel was improved by adding a magnesium metal-organic framework to the semi-interpenetrating polymer matrix yielding a composite hydrogel. Removal of Bismarck Brown and Congo red was studied, and the experimental results fit Freundlich's model. Both hydrogel formulations were tested for the removal of textiles dyes from wastewaters. The magnesium-metal organic framework improved the efficiency of the biobased hydrogel for the removal of direct and mordant dyes reaching up to 89 ± 2%. The composite hydrogel was tested for the removal of Congo Red in a fixed bed column observing the breakthrough point after 168 min. Also, a flocculant material was prepared from collagen and chitosan and was tested for the removal of direct red dye from wastewater removing up to 80 ± 1%. The pretreated wastewater by coagulation-flocculation was treated by adsorption yielding a global removal efficiency of 99%. Finally, the studied hydrogels are potentially biodegradable being completely degraded by the proteolytic action after 22 days. PRACTITIONER POINTS: Composite hydrogels of collagen, chitosan, and MgMOF74 removed efficiently textile dyes from wastewater in batch systems and fixed bed columns. A biobased flocculant of collagen and chitosan significantly improved water quality after coagulation flocculation. Hydrogels were reusable for four cycles, and they can be proteolytically degraded after 22 days.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA