Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 102(3-1): 032102, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33075883

RESUMO

In this paper we analyze the entropy and entropy production of a nonisolated quantum system described within the quantum Brownian motion framework. This is a very general and paradigmatic framework for describing nonisolated quantum systems and can be used in any kind of coupling regime. We start by considering the application of von Neumann entropy to an arbitrarily damped quantum system making use of its reduced density operator. We argue that this application is formally valid and develop a path-integral method to evaluate that quantity analytically. We apply this technique to a harmonic oscillator in contact with a heat bath and obtain an exact form for its entropy. Then we study the entropy production of this system and enlighten important characteristics of its thermodynamical behavior on the pure quantum realm and also address their transition to the classical limit.

2.
Phys Rev E ; 94(6-1): 062147, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28085293

RESUMO

Dissipative quantum systems are frequently described within the framework of the so-called "system-plus-reservoir" approach. In this work we assign their description to the Maximum Entropy Formalism and compare the resulting thermodynamic properties with those of the well-established approaches. Due to the non-negligible coupling to the heat reservoir, these systems are nonextensive by nature, and the former task may require the use of nonextensive parameter dependent informational entropies. In doing so, we address the problem of choosing appropriate forms of those entropies in order to describe a consistent thermodynamics for dissipative quantum systems. Nevertheless, even having chosen the most successful and popular forms of those entropies, we have proven our model to be a counterexample where this sort of approach leads us to wrong results.

3.
Phys Rev Lett ; 109(19): 190402, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-23215364

RESUMO

We use the classical correlation between a quantum system being measured and its measurement apparatus to analyze the amount of information being retrieved in a quantum measurement process. Accounting for decoherence of the apparatus, we show that these correlations may have a sudden transition from a decay regime to a constant level. This transition characterizes a nonasymptotic emergence of the pointer basis, while the system apparatus can still be quantum correlated. We provide a formalization of the concept of emergence of a pointer basis in an apparatus subject to decoherence. This contrast of the pointer basis emergence to the quantum to classical transition is demonstrated in an experiment with polarization entangled photon pairs.

4.
Phys Rev Lett ; 97(25): 250601, 2006 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-17280338

RESUMO

We use the system-plus-reservoir approach to study the dynamics of a system composed of two independent Brownian particles. We present an extension of the well-known model of a bath of oscillators which is capable of inducing an effective coupling between the two particles depending on the choice made for the spectral function of the bath oscillators. The coupling is nonlinear in the variables of interest, and an exponential dependence on these variables is imposed in order to guarantee the translational invariance of the model if the two particles are not subject to any external potential. The effective equations of motion for the particles are obtained by the Laplace transform method, and, besides recovering all the local dynamical properties for each particle, we end up with an effective interaction potential between them. We explicitly analyze one of its possible forms.

5.
Phys Rev Lett ; 91(22): 226803, 2003 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-14683263

RESUMO

Gapless magnons in a plane ferromagnet with normal axis anisotropy are shown to exist besides the usual gapped modes that affect spin dependent transport properties only above a finite temperature. These magnons are one-dimensional objects, in the sense that they are localized inside the domain walls that form in the film. They may play an essential role in the spin dependent scattering processes even down to very low temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA