Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 124(13): 2591-2600, 2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32187493

RESUMO

A theoretical study of the K-shell total photoabsorption and photoionization cross section spectra of water and ammonia bonded to benzene (C6H6) and the polycyclic aromatic hydrocarbons (PAHs) naphthalene (C10H8), coronene (C24H12) and circumcoronene (C54H18) by van der Waals (vdW) forces is presented. The discretized electronic pseudospectra at the oxygen and nitrogen K-edges, covering the discrete and the continuum spectral regions, were obtained at the time-dependent density functional theory (TDDFT) level with dispersion correction. An analytic continuation procedure based on the Padé approximants was used in order to obtain the K-shell cross sections of the structures at the discrete and the continuum regions of the spectra. By examining the electronic spectra of water and ammonia bonded to coronene and circumcoronene, we observed that our results agree well with the experiments performed with graphene. This work provides a quantum mechanical interpretation to the NEXAFS experiments of water and ammonia adsorbed on graphene in terms of a physisorption model of these molecules by van der Waals forces.

2.
J Chem Phys ; 151(18): 184106, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31731870

RESUMO

Excitation energies and oscillator strengths of the first two electronically excited states of helium, water, sulfur dioxide, molecular nitrogen, and carbon monoxide were obtained from an asymmetric-Lanczos-based formulation of the equation-of-motion coupled cluster singles and doubles approach. The total photoionization cross sections were generated by two different methodologies: an analytic continuation procedure based on the Padé approximants and the Stieltjes imaging technique. The results are compared with theoretical photoionization cross sections from algebraic diagrammatic construction [ADC(2)] and ADC(2)-x calculations [M. Ruberti et al., J. Chem. Phys. 140, 184107 (2014)] and with available experimental data.

3.
J Phys Chem A ; 123(7): 1389-1398, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30673243

RESUMO

An experimental and theoretical study of the photoinduced homolysis of the carbon-chlorine bond in an ice matrix of chlorobenzene is presented. A condensed chlorobenzene film has been grown in situ and near edge X-ray fine structure (NEXAFS) spectra were collected after exposing the condensed film to a monochromatic photon beam centered at the 2822 eV resonant excitation of chlorine and at 2850 eV. The photoabsorption to the Cl 1s → σ* and Cl 1s → π* states has been measured and the hypothesis of free radical coupling reactions was investigated via time-dependent density functional theory (TD-DFT) and complete active space self-consistent field (CASSCF) calculations. Also, potential energy pathways to the C-Cl cleavage have been obtained at the CASSCF level to the Cl 1s → σ*, 1s → π*, and 1s → ∞ states. A strong dissociative character was only found for the Cl 1s → σ* resonance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA