Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuropharmacology ; 99: 273-84, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25957813

RESUMO

The α4ß2 neuronal nicotinic acetylcholine receptor (nAChR) plays a crucial role in nicotine addiction. These receptors are known to desensitize and up-regulate after chronic nicotine exposure, but the mechanism remains unknown. Currently, the structure and functional role of the intracellular domains of the nAChR are obscure. To study the effect of subunit phosphorylation on α4ß2 nAChR function and expression, eleven residues located in the M3-M4 cytoplasmic loop were mutated to alanine and aspartic acid. Two-electrode voltage clamp and 125I-labeled epibatidine binding assays were performed on Xenopus oocytes to assess agonist activation and receptor expression. When ACh was used as an agonist, a decrease in receptor activation was observed for the majority of the mutations. When nicotine was used as an agonist, four mutations exhibited a statistically significant hypersensitivity to nicotine (S438D, S469A, Y576A, and S589A). Additionally, two mutations (S516D and T536A) that displayed normal activation with ACh displayed remarkable reductions in sensitivity to nicotine. Binding assays revealed a constitutive up-regulation in these two nicotine mutations with reduced nicotine sensitivity. These results suggest that consensus phosphorylation residues in the M3-M4 cytoplasmic loop of the α4 subunit play a crucial role in regulating α4ß2 nAChR agonist selectivity and functional expression. Furthermore, these results suggest that disruption of specific interactions at PKC putative consensus sites can render α4ß2 nAChRs almost insensitive to nicotine without substantial effects on normal AChR function. Therefore, these PKC consensus sites in the M3-M4 cytoplasmic loop of the α4 nAChR subunit could be a target for smoking cessation drugs.


Assuntos
Agonistas Nicotínicos/farmacologia , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Acetilcolina/farmacologia , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Caseína Quinase II/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citoplasma , Radioisótopos do Iodo , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Mutagênese Sítio-Dirigida , Mutação , Oócitos , Técnicas de Patch-Clamp , Fosforilação , Proteína Quinase C/metabolismo , Piridinas/farmacologia , Ratos , Xenopus
2.
Channels (Austin) ; 6(2): 111-23, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22622285

RESUMO

The lipid-protein interface is an important domain of the nicotinic acetylcholine receptor (nAChR) that has recently garnered increased relevance. Several studies have made significant advances toward determining the structure and dynamics of the lipid-exposed domains of the nAChR. However, there is still a need to gain insight into the mechanism by which lipid-protein interactions regulate the function and conformational transitions of the nAChR. In this study, we extended the tryptophan scanning mutagenesis (TrpScanM) approach to dissect secondary structure and monitor the conformational changes experienced by the δM4 transmembrane domain (TMD) of the Torpedo californica nAChR, and to identify which positions on this domain are potentially linked to the regulation of ion channel kinetics. The difference in oscillation patterns between the closed- and open-channel states suggests a substantial conformational change along this domain as a consequence of channel activation. Furthermore, TrpScanM revealed distortions along the helical structure of this TMD that are not present on current models of the nAChR. Our results show that a Thr-Pro motif at positions 462-463 markedly bends the helical structure of the TMD, consistent with the recent crystallographic structure of the GluCl Cys-loop receptor which reveals a highly bent TMD4 in each subunit. This Thr-Pro motif acts as a molecular hinge that delineates two gating blocks in the δM4 TMD. These results suggest a model in which a hinge-bending motion that tilts the helical structure is combined with a spring-like motion during transition between the closed- and open-channel states of the δM4 TMD.


Assuntos
Ativação do Canal Iônico/genética , Receptores Nicotínicos/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Bungarotoxinas/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oócitos , Técnicas de Patch-Clamp , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Relação Estrutura-Atividade , Torpedo , Triptofano/química , Xenopus laevis
3.
Channels (Austin) ; 5(4): 345-56, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21785268

RESUMO

The nicotinic acetylcholine receptor (nAChR) is a member of a family of ligand-gated ion channels that mediate diverse physiological functions, including fast synaptic transmission along the peripheral and central nervous systems. Several studies have made significant advances toward determining the structure and dynamics of the lipid-exposed domains of the nAChR. However, a high-resolution atomic structure of the nAChR still remains elusive. In this study, we extended the Fourier transform coupled tryptophan scanning mutagenesis (FT-TrpScanM) approach to gain insight into the secondary structure of the δM3 transmembrane domain of the Torpedo californica nAChR, to monitor conformational changes experienced by this domain during channel gating, and to identify which lipid-exposed positions are linked to the regulation of ion channel kinetics. The perturbations produced by periodic tryptophan substitutions along the δM3 transmembrane domain were characterized by two-electrode voltage clamp and (125)I-labeled α-bungarotoxin binding assays. The periodicity profiles and Fourier transform spectra of this domain revealed similar helical structures for the closed- and open-channel states. However, changes in the oscillation patterns observed between positions Val-299 and Val-304 during transition between the closed- and open-channel states can be explained by the structural effects caused by the presence of a bending point introduced by a Thr-Gly motif at positions 300-301. The changes in periodicity and localization of residues between the closed-and open-channel states could indicate a structural transition between helix types in this segment of the domain. Overall, the data further demonstrate a functional link between the lipid-exposed transmembrane domain and the nAChR gating machinery.


Assuntos
Membrana Celular/química , Proteínas de Peixes/química , Receptores Nicotínicos/química , Torpedo , Animais , Membrana Celular/genética , Membrana Celular/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Análise de Fourier , Ativação do Canal Iônico/fisiologia , Mutagênese , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Xenopus laevis
4.
J Neurosci Res ; 84(8): 1778-88, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17044037

RESUMO

The second transmembrane domain (TMD2) of the Cys-loop family of ligand-gated ion channels forms the channel pore. The functional role of the amino acid residues contributing to the channel pore in neuronal nicotinic alpha3 receptors is not well understood. We characterized the contribution of TMD2 position V7' to channel gating in neuronal nicotinic alpha3 receptors. Site-directed mutagenesis was used to substitute position alpha3 (V7') with four different amino acids (A, F, S, or Y) and coexpressed each mutant subunit with wild-type (WT) beta2 or beta4 subunits in Xenopus oocytes. Whole-cell voltage clamp experiments show that substitution for an alanine, serine, or phenylalanine decreased by 2.3-6.2-fold the ACh-EC(50) for alpha3beta2 and alpha3beta4 receptor subtypes. Interestingly, mutation V7'Y did not produce a significant change in ACh-EC(50) when coexpressed with the beta2 subunit but showed a significant approximately two-fold increase with beta4. Similar responses were obtained with nicotine as the agonist. The antagonist sensitivity of the mutant channels was assessed by using dihydro-beta-erythroidine (DHbetaE) and methyllycaconitine (MLA). The apparent potency of DHbetaE as an antagonist increased by approximately 3.7- and 11-fold for the alpha3beta2 V7'S and V7'F mutants, respectively, whereas no evident changes in antagonist potency were observed for the V7'A and V7'Y mutants. The V7'S and V7'F mutations increase MLA antagonist potency for the alpha3beta4 receptor by approximately 6.2- and approximately 9.3-fold, respectively. The V7'A mutation selectively increases the MLA antagonist potency for the alpha3beta4 receptor by approximately 18.7-fold. These results indicate that position V7' contributes to channel gating kinetics and pharmacology of the neuronal nicotinic alpha3 receptors.


Assuntos
Ativação do Canal Iônico/fisiologia , Receptores Nicotínicos/metabolismo , Valina/metabolismo , Acetilcolina/farmacologia , Aconitina/análogos & derivados , Aconitina/farmacologia , Animais , Di-Hidro-beta-Eritroidina/farmacologia , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Estimulação Elétrica/métodos , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/genética , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Potenciais da Membrana/efeitos da radiação , Mutagênese/fisiologia , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/farmacologia , Oócitos , Técnicas de Patch-Clamp/métodos , Estrutura Terciária de Proteína/fisiologia , Ratos , Receptores Nicotínicos/química , Receptores Nicotínicos/genética , Fatores de Tempo , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA