Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Eur J Nutr ; 62(5): 2269-2278, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37083722

RESUMO

PURPOSE: Resistant starch (RS) content has exhibited beneficial effects on glycemic control; however, few studies have investigated the effects of this substance on postprandial responses and appetite in subjects with type 2 diabetes (T2D). Here, we aimed to examine the effects of RS from two sources on glycemic response (GR), postprandial lipemia, and appetite in subjects with T2D. METHODS: In a randomized and crossover study, 17 subjects with T2D consumed native banana starch (NBS), high-amylose maize starch (HMS) or digestible maize starch (DMS) for 4 days. On day 5, a 6-h oral meal tolerance test (MTT) was performed to evaluate glycemic and insulinemic responses as well as postprandial lipemia. Besides, subjective appetite assessment was measured using a visual analogue scale. RESULTS: NBS induced a reduction on fasting glycemia, glycemia peak and insulinemic response during MTT. However, no modifications on postprandial lipemia were observed after RS treatments. Both NBS and HMS reduced hunger and increased satiety. CONCLUSION: NBS supplementation induced more beneficial effects on glycemic metabolism than HMS even when all interventions were matched for digestible starch content. RS intake did not modify postprandial lipemia, however, positively affected subjective appetite rates. TRIAL REGISTRATION: This trial was retrospectively registered at www.anzctr.org.au (ACTRN12621001382864) on October 11, 2021.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperlipidemias , Humanos , Apetite , Amido Resistente/farmacologia , Estudos Cross-Over , Glicemia/metabolismo , Insulina , Amido/metabolismo , Período Pós-Prandial
2.
Nutrients ; 13(11)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34836304

RESUMO

We previously observed beneficial effects of native banana starch (NBS) with a high resistant starch (RS) content on glycemic response in lean and obese participants. Here, we aimed to determine the effects of NBS and high-amylose maize starch (HMS) on glycemic control (GC) and glycemic variability (GV) in patients with type 2 diabetes (T2D) when treatments were matched for digestible starch content. In a randomized, crossover study, continuous glucose monitoring (CGM) was performed in 17 participants (aged 28-65 years, BMI ≥ 25 kg/m2, both genders) consuming HMS, NBS, or digestible maize starch (DMS) for 4 days. HMS and NBS induced an increase in 24 h mean blood glucose during days 2 to 4 (p < 0.05). CONGA, GRADE, and J-index values were higher in HMS compared with DMS only at day 4 (p < 0.05). Yet, NBS intake provoked a reduction in fasting glycemia changes from baseline compared with DMS (p = 0.0074). In conclusion, under the experimental conditions, RS from two sources did not improve GC or GV. Future longer studies are needed to determine whether these findings were affected by a different baseline microbiota or other environmental factors.


Assuntos
Glicemia/efeitos dos fármacos , Diabetes Mellitus Tipo 2/complicações , Controle Glicêmico/métodos , Amido Resistente/farmacologia , Adulto , Amilose , Automonitorização da Glicemia , Estudos Cross-Over , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade , Amido/administração & dosagem , Zea mays/química
3.
Artigo em Inglês | MEDLINE | ID: mdl-31614418

RESUMO

Reports surrounding the role of resistant starch (RS) on postprandial lipemia in humans are scarce. The aim of the present study is to examine the effects of resistant starch on the postprandial lipemic response, subjective measures of appetite, and energy intake in overweight and obese subjects. In a randomized, single-blind, crossover study, 14 overweight/obese participants ate a high-fat breakfast (679 kcal, 58% from fat) and a supplement with native banana starch (NBS), high-amylose maize starch (HMS), or digestible maize starch (DMS) on three separate occasions. All supplements provided were matched by the available carbohydrate content, and the RS quantity in NBS and HMS supplements was identical. Appetite was estimated using visual analogue scale (VAS) and an ad libitum test meal. Postprandial glycemia, triglycerides, cholesterol, high-density lipoprotein (HDL) cholesterol, and insulin excursions did not differ between treatments. Subjective appetite measures of satiety were significantly increased after HMS; however, no effects on energy intake were observed during the ad libitum test meal. These findings suggest that a single acute dose of RS cannot be expected to improve postprandial lipemia in subjects with overweight or obesity on a high-fat meal. However, the potential benefits of long-term supplementation should not be ruled out based on these results.


Assuntos
Apetite/fisiologia , Ingestão de Alimentos/fisiologia , Hiperlipidemias/fisiopatologia , Obesidade/fisiopatologia , Saciação/fisiologia , Amido/administração & dosagem , Amido/metabolismo , Adulto , Estudos Cross-Over , Feminino , Humanos , Masculino , México , Período Pós-Prandial , Método Simples-Cego , Adulto Jovem
4.
Biomedica ; 39(2): 291-299, 2019 06 15.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-31529816

RESUMO

Introduction: Sodium caseinate (CS) and its components (alpha-casein, beta-casein, and kappa-casein) have been shown to inhibit the proliferation of the mouse hematopoietic 32D clone 3 (32Dcl3) cell line and induce its differentiation into macrophages. It is well-known that alpha-casein induces IL-1ß production and that this cytokine inhibits the proliferation via the production of tumor necrosis factor alpha (TNF-alpha), but it is not known if CS and the caseins inhibit the proliferation via TNF-alpha production. Objective: To evaluate if CS and alpha-casein, beta-casein and kappa-casein inhibit the proliferation on 32Dcl3 cell line via TNF-alpha. Materials and methods: We used different concentrations of CS, alpha-casein, betacasein and kappa-casein in 32Dcl3 cells to evaluate cell proliferation. We assessed cell viability by MTT, induction to apoptosis by flow cytometry, and TNF-alpha synthesis by ELISA. Additionally, we performed anti-TNF-alpha neutralization assays on 32Dcl3 cells treated with CS and alpha-casein and we evaluated proliferation. Results: The results showed that CS, alpha-casein, beta-casein, and kappa-casein reduced proliferation of the 32Dcl3 cell line without affecting the viability and that only CS and alpha-casein induced apoptosis and the release of TNF-alpha. The 32Dcl3 cells treated with CS and alpha-casein reestablished their proliferation by using anti-TNF-alpha antibodies. Conclusion: TNF-alpha was the main responsible for the inhibition of proliferation in 32Dcl3 cells treated with CS or alpha-casein.


Introducción. Se ha demostrado que el caseinato de sodio y sus componentes (caseínas α, ß y κ) inhiben la proliferación de la línea celular hematopoyética de ratón 32D clone 3 (32Dcl3) e inducen su diferenciación hacia macrófagos. Se sabe que la caseína α induce la producción de IL-1ß y que esta última citocina inhibe la proliferación celular mediante la producción del factor de necrosis tumoral alfa (TNF-α), pero se desconoce si el caseinato de sodio y las caseínas inducen la producción de TNF y si este es el responsable de la inhibición de la proliferación. Objetivo. Evaluar si el caseinato de sodio y las caseínas α, ß y κ inhiben la proliferación de la línea celular 32Dcl3 mediante la producción de TNF-α. Materiales y métodos. Se usaron diferentes concentraciones de caseinato de sodio y de las caseínas α, ß y κ en las células 32Dcl3. Posteriormente, se evaluaron la viabilidad celular mediante una prueba con el MTT [3-(4,5-dimetiltiazol-2-ilo)-2,5-difeniltetrazol], la inducción de apoptosis con la citometría de flujo y la síntesis del TNF-α con el ELISA. Además, se hicieron pruebas de neutralización con anti-TNF-α en células 32Dcl3 tratadas con caseinato de sodio y caseína α, y se evaluó la proliferación celular. Resultados. Se encontró que el caseinato de sodio y las caseínas α, ß y κ reducían la proliferación de la línea celular 32Dcl3 sin afectar la viabilidad, y que solo el caseinato y la caseína α inducían la apoptosis y la liberación al medio de TNF-α. La proliferación de células 32Dcl3 tratadas con caseinato y caseína α se restableció al usar anticuerpos anti-TNF-α. Conclusión. El TNF-α fue el principal responsable de la inhibición de la proliferación en las células 32Dcl3 tratadas con caseinato de sodio o caseína α.


Assuntos
Caseínas/farmacologia , Células Mieloides/efeitos dos fármacos , Mielopoese/efeitos dos fármacos , Fator de Necrose Tumoral alfa/fisiologia , Animais , Apoptose/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Clonais , Macrófagos/citologia , Camundongos , Células Mieloides/citologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/biossíntese
5.
Biomédica (Bogotá) ; Biomédica (Bogotá);39(2): 291-299, ene.-jun. 2019. tab, graf
Artigo em Espanhol | LILACS | ID: biblio-1011441

RESUMO

Resumen Introducción. Se ha demostrado que el caseinato de sodio y sus componentes (caseínas α, β y κ) inhiben la proliferación de la línea celular hematopoyética de ratón 32D clone 3 (32Dcl3) e inducen su diferenciación hacia macrófagos. Se sabe que la caseína α induce la producción de IL-1β y que esta última citocina inhibe la proliferación celular mediante la producción del factor de necrosis tumoral alfa (TNF-α), pero se desconoce si el caseinato de sodio y las caseínas inducen la producción de TNF y si este es el responsable de la inhibición de la proliferación. Objetivo. Evaluar si el caseinato de sodio y las caseínas α, β y κ inhiben la proliferación de la línea celular 32Dcl3 mediante la producción de TNF-α. Materiales y métodos. Se usaron diferentes concentraciones de caseinato de sodio y de las caseínas α, β y κ en las células 32Dcl3. Posteriormente, se evaluaron la viabilidad celular mediante una prueba con el MTT [3-(4,5-dimetiltiazol-2-ilo)-2,5-difeniltetrazol], la inducción de apoptosis con la citometría de flujo y la síntesis del TNF-α con el ELISA. Además, se hicieron pruebas de neutralización con anti-TNF-α en células 32Dcl3 tratadas con caseinato de sodio y caseína α, y se evaluó la proliferación celular. Resultados. Se encontró que el caseinato de sodio y las caseínas α, β y κ reducían la proliferación de la línea celular 32Dcl3 sin afectar la viabilidad, y que solo el caseinato y la caseína α inducían la apoptosis y la liberación al medio de TNF-α. La proliferación de células 32Dcl3 tratadas con caseinato y caseína α se restableció al usar anticuerpos anti-TNF-α. Conclusión. El TNF-α fue el principal responsable de la inhibición de la proliferación en las células 32Dcl3 tratadas con caseinato de sodio o caseína α.


Abstract Introduction: Sodium caseinate (CS) and its components (alpha-casein, beta-casein, and kappa-casein) have been shown to inhibit the proliferation of the mouse hematopoietic 32D clone 3 (32Dcl3) cell line and induce its differentiation into macrophages. It is well-known that alpha-casein induces IL-1β production and that this cytokine inhibits the proliferation via the production of tumor necrosis factor alpha (TNF-alpha), but it is not known if CS and the caseins inhibit the proliferation via TNF-alpha production. Objective: To evaluate if CS and alpha-casein, beta-casein and kappa-casein inhibit the proliferation on 32Dcl3 cell line via TNF-alpha. Materials and methods: We used different concentrations of CS, alpha-casein, beta-casein and kappa-casein in 32Dcl3 cells to evaluate cell proliferation. We assessed cell viability by MTT, induction to apoptosis by flow cytometry, and TNF-alpha synthesis by ELISA. Additionally, we performed anti-TNF-alpha neutralization assays on 32Dcl3 cells treated with CS and alpha-casein and we evaluated proliferation. Results: The results showed that CS, alpha-casein, beta-casein, and kappa-casein reduced proliferation of the 32Dcl3 cell line without affecting the viability and that only CS and alpha-casein induced apoptosis and the release of TNF-alpha. The 32Dcl3 cells treated with CS and alpha-casein reestablished their proliferation by using anti-TNF-alpha antibodies. Conclusion: TNF-alpha was the main responsible for the inhibition of proliferation in 32Dcl3 cells treated with CS or alpha-casein.


Assuntos
Animais , Camundongos , Caseínas/farmacologia , Fator de Necrose Tumoral alfa/fisiologia , Células Mieloides/efeitos dos fármacos , Mielopoese/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/biossíntese , Células Clonais , Apoptose/efeitos dos fármacos , Células Mieloides/citologia , Macrófagos/citologia
6.
Cytokine ; 26(2): 66-72, 2004 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-15050606

RESUMO

Interleukin-1 alpha (IL-1alpha) and beta (IL-1beta) are well known factors that stimulate hematopoiesis, nevertheless there are reports that show that they can also inhibit this activity. While both IL-1alpha and IL-1beta induce the expression of hematopoietic cytokines, such as growth factors and their receptors on myeloid cells, helping thus to regulate hematopoiesis, it is not known if their inhibitory activity is also mediated through the induction of other specific cytokines. In this work we show that recombinant human IL-1beta (rhIL-1beta) inhibits the proliferation of a mouse IL-3-dependent myeloid multipotent cell line (32D cl3), without inducing its differentiation. We show that rhIL-1beta induces in 32D cl3 cells the expression of the tumor necrosis factor alpha (TNF-alpha) gene, a well known growth inhibitor, and that the rhIL-1beta growth inhibition property on 32D cl3 cells is partially due to this secreted TNF-alpha, hinting thus that the inhibition of hematopoiesis by IL-1 is mediated through other induced cytokines.


Assuntos
Interleucina-1/metabolismo , Células Mieloides/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Anticorpos/imunologia , Divisão Celular/fisiologia , Regulação da Expressão Gênica/fisiologia , Camundongos , Células Mieloides/citologia , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA