Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Org Biomol Chem ; 11(32): 5300-9, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23842892

RESUMO

It has been well documented that ß-carboline alkaloids, particularly the 9-methyl derivatives, are efficient photosensitizers. However, structure-activity relationships are missing and the photochemical mechanisms involved in the DNA photodamage still remain unknown. In the present work, we examined the capability of three 9-methyl-ß-carbolines (9-methyl-norharmane, 9-methyl-harmane and 9-methyl-harmine) to induce DNA damage upon UVA excitation at physiological pH. The type and extent of the damage was analyzed together with the photophysical and binding properties of the ß-carboline derivatives investigated. The results indicate that even at neutral pH most of the DNA damage is generated from the protonated form of the excited ß-carbolines in a type-I reaction. Oxidized purine residues are produced in high excess over oxidized pyrimidines, single-strand breaks and sites of base loss. In addition, the excited neutral form of the ß-carbolines is responsible for significant generation of cyclobutane pyrimidine dimers (CPDs) by triplet-triplet-energy transfer. In the case of 9-methyl-norharmane, the yield of CPDs is increased in D2O, probably due to less rapid protonation in the deuterated solvent.


Assuntos
Carbolinas/farmacologia , Corticoviridae/genética , Dano ao DNA/efeitos dos fármacos , DNA Viral/genética , DNA/genética , Fármacos Fotossensibilizantes/farmacologia , Animais , Carbolinas/química , Bovinos , Modelos Moleculares , Fármacos Fotossensibilizantes/química , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA