Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sleep ; 39(1): 209-16, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26414896

RESUMO

STUDY OBJECTIVES: Children with obstructive sleep apnea syndrome (OSAS) often experience periods of hypercapnia during sleep, a potent stimulator of cerebral blood flow (CBF). Considering this hypercapnia exposure during sleep, it is possible that children with OSAS have abnormal CBF responses to hypercapnia even during wakefulness. Therefore, we hypothesized that children with OSAS have blunted CBF response to hypercapnia during wakefulness, compared to snorers and controls. METHODS: CBF changes during hypercapnic ventilatory response (HCVR) were tested in children with OSAS, snorers, and healthy controls using diffuse correlation spectroscopy (DCS). Peak CBF changes with respect to pre-hypercapnic baseline were measured for each group. The study was conducted at an academic pediatric sleep center. RESULTS: Twelve children with OSAS (aged 10.1 ± 2.5 [mean ± standard deviation] y, obstructive apnea hypopnea index [AHI] = 9.4 [5.1-15.4] [median, interquartile range] events/hour), eight snorers (11 ± 3 y, 0.5 [0-1.3] events/hour), and 10 controls (11.4 ± 2.6 y, 0.3 [0.2-0.4] events/hour) were studied. The fractional CBF change during hypercapnia, normalized to the change in end-tidal carbon dioxide, was significantly higher in controls (9 ± 1.8 %/mmHg) compared to OSAS (7.1 ± 1.5, P = 0.023) and snorers (6.7 ± 1.9, P = 0.025). CONCLUSIONS: Children with OSAS and snorers have blunted CBF response to hypercapnia during wakefulness compared to controls. Noninvasive DCS blood flow measurements of hypercapnic reactivity offer insights into physiopathology of OSAS in children, which could lead to further understanding about the central nervous system complications of OSAS.


Assuntos
Circulação Cerebrovascular/fisiologia , Hipercapnia/complicações , Hipercapnia/fisiopatologia , Apneia Obstrutiva do Sono/complicações , Adolescente , Dióxido de Carbono/sangue , Criança , Feminino , Humanos , Hipercapnia/sangue , Masculino , Polissonografia , Sono , Apneia Obstrutiva do Sono/sangue , Apneia Obstrutiva do Sono/fisiopatologia , Ronco/sangue , Ronco/complicações , Ronco/fisiopatologia , Vigília
2.
Biomed Opt Express ; 4(7): 978-94, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23847725

RESUMO

A pilot study explores relative contributions of extra-cerebral (scalp/skull) versus brain (cerebral) tissues to the blood flow index determined by diffuse correlation spectroscopy (DCS). Microvascular DCS flow measurements were made on the head during baseline and breath-holding/hyperventilation tasks, both with and without pressure. Baseline (resting) data enabled estimation of extra-cerebral flow signals and their pressure dependencies. A simple two-component model was used to derive baseline and activated cerebral blood flow (CBF) signals, and the DCS flow indices were also cross-correlated with concurrent Transcranial Doppler Ultrasound (TCD) blood velocity measurements. The study suggests new pressure-dependent experimental paradigms for elucidation of blood flow contributions from extra-cerebral and cerebral tissues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA