Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(15): 22281-22292, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34783950

RESUMO

Fish development can be affected by environmental pollutants such as crude oil (anthropogenic or natural sources), causing alterations especially in cardiac function and morphology. Most such studies have focused on saltwater species, whereas studies in freshwater fishes are scant. The objective of the current study was to evaluate the effects of crude oil exposure (as 0, 5, 10, 15, or 20% high-energy water accommodated fractions, HEWAF) on cardiac function and edema formation during two early periods of development (embryo and eleuteroembryo, 48 h each) individually using the tropical gar Atractosteus tropicus as a model. Embryos did not exhibit alterations in body mass, total length, condition factor, and cardiac function as a function of oil. In contrast, eleuteroembryos proved to be more sensitive and exhibited increased body mass, total length, and condition factor, decreased heart rate and phenotypic alterations such as cardiac dysmorphia (tubular hearts) and spine curvature at high concentrations of HEWAF. Moreover, edema formation was observed in both stages This study shows different functional responses of A. tropicus after crude oil exposure and provides useful information of the developmental impacts of these compounds on the early life stages of freshwater tropical fishes.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Animais , Peixes/fisiologia , Água Doce , Coração , Petróleo/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
2.
Front Physiol ; 12: 712633, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744759

RESUMO

Biomedical research focusing on physiological, morphological, behavioral, and other aspects of development has long depended upon the chicken (Gallus gallus domesticus) as a key animal model that is presumed to be typical of birds and generally applicable to mammals. Yet, the modern chicken in its many forms is the result of artificial selection more intense than almost any other domesticated animal. A consequence of great variation in genotype and phenotype is that some breeds have inherent aberrant physiological and morphological traits that may show up relatively early in development (e.g., hypertension, hyperglycemia, and limb defects in the broiler chickens). While such traits can be useful as models of specific diseases, this high degree of specialization can color general experimental results and affect their translational value. Against this background, in this review we first consider the characteristics that make an animal model attractive for developmental research (e.g., accessibility, ease of rearing, size, fecundity, development rates, genetic variation, etc.). We then explore opportunities presented by the embryo to adult continuum of alternative bird models, including quail, ratites, songbirds, birds of prey, and corvids. We conclude by indicating that expanding developmental studies beyond the chicken model to include additional avian groups will both validate the chicken model as well as potentially identify even more suitable avian models for answering questions applicable to both basic biology and the human condition.

3.
Environ Toxicol Chem ; 39(11): 2208-2220, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32725906

RESUMO

Dioxin exposure during bird embryonic development disrupts immunity as well as mechanisms involved in energy metabolism, potentially affecting negatively acute-phase responses to pathogens. Thus, we hypothesized that embryonic exposure to 2,3,7,8-tetrachlorodibenzodioxin (TCDD) changes the metabolism and blood physiology of domestic chicks, affecting their physiological competence for responding to immune challenges. To test this hypothesis, we injected doses of 0, 1.5, and 3 ng TCDD/egg (based on survival experiments) on embryonic day 4 and then measured O2 consumption and CO2 production for metabolic rate, ventilation, and body temperature (TB ) in 5-d-old chicks. Then, chicks were injected with lipopolysaccharide (LPS, endotoxin) or saline prior to repeating the physiological measurements. A second chick group exposed to identical TCDD and LPS treatments had blood partial pressure of oxygen, partial pressure of carbon dioxide, pH, bicarbonate concentration, lactate concentration, osmolality, hemoglobin concentration, red blood cell concentration, and hematocrit, as well as TB , analyzed at 1 and 5 h after LPS injection. Metabolism in chicks embryonically exposed to 1.5 and 3 ng TCDD/egg was up to 37% higher, whereas body mass of chicks exposed to 3 ng TCDD/egg was approximately 6% lower. Chicks embryonically exposed to 3 ng TCDD/egg challenged with LPS showed a relative persistent hypometabolism accompanied by elimination of the normal hematological and osmotic responses to LPS. We conclude that embryonic exposure to TCDD affects posthatching metabolism as well as impairs metabolic, hematological, and osmotic responses to LPS. Environ Toxicol Chem 2020;39:2208-2220. © 2020 SETAC.


Assuntos
Galinhas/sangue , Galinhas/metabolismo , Endotoxinas/toxicidade , Exposição Ambiental/análise , Dibenzodioxinas Policloradas/toxicidade , Animais , Metabolismo Basal/efeitos dos fármacos , Temperatura Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Embrião de Galinha , Lipopolissacarídeos/toxicidade , Ventilação Pulmonar/efeitos dos fármacos
4.
Artigo em Inglês | MEDLINE | ID: mdl-31526846

RESUMO

The darkedged splitfin (Amarillo fish), Girardinichthys multiradiatus is a vulnerable endemic fish species inhabiting central Mexico's high altitude Upper Lerma Basin, where aquatic hypoxia is exacerbated by low barometric pressures (lower PO2s), large aquatic oxygen changes, poor aquatic systems management and urban, agricultural and industrial pollution. The respiratory physiology of G. multiradiatus under such challenging conditions is unknown - therefore the main goal of the present study was to determine metabolic rates and hypoxia tolerance to elucidate possible physiological adaptations allowing this fish to survive high altitude and increasingly eutrophic conditions. Fish came from two artificial reservoirs - San Elías and Ex Hacienda - considered refuges for this species. Both reservoirs showed high dial PO2 variation, with hypoxic conditions before midday and after 20:00 h, ~4 h of normoxia (15 kPa) from 16:00-20:00, and ~4 h of hyperoxia (16-33 kPa) from 12:00-16:00. Standard metabolic rate at 20 ±â€¯0.5 °C of larvae from Ex Hacienda was significantly higher than those from San Elías, but these differences disappeared in juveniles and adults. Metabolic rate at 20 ±â€¯0.5 °C for adults was 9.8 ±â€¯0.1 SEM µmol O2/g/h. The metabolic scaling exponent for adults was 0.58 for San Elías fish and 0.83 for Ex Hacienda fish, indicating possible ecological effects on this variable. Post-larval fish in Ex Hacienda and all stages in San Elias site showed considerable hypoxia tolerance, with PCrit mean values ranging from 1.9-3.1 kPa, lower than those of many tropical fish at comparable temperatures. Collectively, these data indicate that G. multiradiatus is well adapted for the hypoxia associated with their high-altitude habitat.


Assuntos
Ciprinodontiformes/fisiologia , Brânquias/metabolismo , Hipóxia/fisiopatologia , Consumo de Oxigênio/fisiologia , Adaptação Fisiológica , Altitude , Animais , Metabolismo Basal , México
5.
Int J Dev Biol ; 53(1): 101-8, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19123131

RESUMO

Thyroid hormones--particularly triiodothyronine, T3--play a critical role in the morphological transformations comprising metamorphosis in larval bullfrogs (Rana catesbeiana). Traditional staging criteria for anuran larvae incompletely distinguish physiological and behavioral changes during growth. We therefore first developed a new parameter to describe larval growth, the developmental index (DI), which is simply the ratio between the tail length of the larva and its head diameter. Using the DI we were able to identify two distinct populations classifying the larvae during growth along a continuous linear scale with a cutoff value of DI at 2.8. Classification based on the DI, used in this study, proved an effective complement to existing classifications based on developmental staging into pre- or pro-metamorphic stages. Exposure to T3 in the water induced a rapid (beginning within 5 min) and significant decrease (approximately 20-40%) in locomotor activity, measured as total distance traversed and velocity. The largest decrease occurred in more developed larvae (DI<2.8). To determine correlated changes in the neuromuscular junctions during metamorphosis and apoptotic tail loss, miniature endplate currents from tail muscle were recorded during acute exposure to a hypertonic solution, which simulates an apoptotic volume decrease. Our results support a role for T3 in regulating larval locomotor activity during development, and suggest an enhanced response to volume depletion at the neuromuscular junction of older larvae (DI<2.8) compared to younger animals (DI> or =2.8). We discuss the significance of the possible role of an apoptotic volume decrease at the level of the neuromuscular junction.


Assuntos
Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Metamorfose Biológica/efeitos dos fármacos , Rana catesbeiana/crescimento & desenvolvimento , Natação/fisiologia , Tri-Iodotironina/farmacologia , Animais , Bochecha/fisiologia , Fenômenos Eletrofisiológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA