Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Animals (Basel) ; 13(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36978604

RESUMO

This study investigated the seasonal variations in mRNA expression of FSH (Fshr), LH (Lhr) receptors, melatonin (Mt1 and Mt2) receptors, melatonin-synthetizing enzymes (Asmt and Aanat) and melatonin concentration in developing follicles from mares raised in natural photoperiods. For one year, ultrasonographic follicular aspiration procedures were performed monthly, and small (<20 mm), medium (20 to 35 mm) and large (>35 mm) follicles were recovered from five mares. One day before monthly sample collections, an exploratory ultrasonography conducted to record the number and the size of all follicles larger than 15 mm. The total number of large follicles were higher during the spring/summer (8.2 ± 1.9) than during autumn/winter (3.0 ± 0.5). Compared to autumn/winter seasons, there was an increase of Fshr and Aanat mRNA expressions in small, medium and large follicles, an increase of Lhr and Asmt mRNA expressions in medium and large follicles and an increase of Mt1 and Mt2 mRNA expressions in small and large follicles during spring/summer. The melatonin levels in follicular fluid were also higher during the spring/summer seasons. The present data show that melatonin locally upregulates the mRNA expression of Mt1 and Mt2 receptors and melatonin-forming enzymes in mare developing follicles during reproductive seasons.

2.
Gen Comp Endocrinol ; 300: 113633, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33031801

RESUMO

Pregnancy and lactation are reproductive processes that rely on physiological adaptations that should be timely and adequately triggered to guarantee both maternal and fetal health. Pineal melatonin is a hormone that presents daily and seasonal variations that synchronizes the organism's physiology to the different demands across time through its specific mechanisms and ways of action. The reproductive system is a notable target for melatonin as it actively participates on reproductive physiology and regulates the hypothalamus-pituitary-gonads axis, influencing gonadotropins and sexual hormones synthesis and release. For its antioxidant properties, melatonin is also vital for the oocytes and spermatozoa quality and viability, and for blastocyst development. Maternal pineal melatonin blood levels increase during pregnancy and triggers the maternal physiological alterations in energy metabolism both during pregnancy and lactation to cope with the energy demands of both periods and to promote adequate mammary gland development. Moreover, maternal melatonin freely crosses the placenta and is the only source of this hormone to the fetus. It importantly times the conceptus physiology and influences its development and programing of several functions that depend on neural and brain development, ultimately priming adult behavior and energy and glucose metabolism. The present review aims to explain the above listed melatonin functions, including the potential alterations observed in the progeny gestated under maternal chronodisruption and/or hypomelatoninemia.


Assuntos
Desenvolvimento Fetal/fisiologia , Lactação/fisiologia , Melatonina/metabolismo , Glândula Pineal/metabolismo , Animais , Feminino , Humanos , Glândulas Mamárias Humanas/embriologia , Sistema Nervoso/embriologia , Gravidez
3.
Life Sci ; 265: 118769, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33309717

RESUMO

AIMS: Investigate the role of melatonin on the regulation of body temperature in aged animals that have impaired melatonin production. MATERIAL AND METHODS: Aged Male Wistar rats were randomly assigned to the following groups: 1) control (vehicle added to the water bottles during the dark phase) and 2) melatonin-treated (10 mg/kg melatonin added to the water bottles during the dark phase). Before and after 16 weeks of vehicle or melatonin treatment, control group and melatonin-treated animals were acutely exposed to 18 °C for 2 h for an acute cold challenge and thermal images were obtained using an infrared camera. After 16 weeks, animals were euthanized and brown and beige adipocytes were collected for analysis of genes involved in the thermogenesis process by real-time PCR, and the uncoupling protein expression was evaluated by immunoblotting. Browning intensity of beige adipocytes were quantified by staining with hematoxylin-eosin. KEY FINDINGS: Chronic melatonin supplementation induced a minor increase in body mass and increased the animal's thermogenic potential in the cold acute challenge. Brown and beige adipocytes acted in a coordinated and complementary way to ensure adequate heat production. SIGNIFICANCE: Melatonin plays an important role in the thermoregulatory mechanisms, ensuring greater capacity to withstand cold and, also, participating in the regulation of energy balance.


Assuntos
Regulação da Temperatura Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Resposta ao Choque Frio/efeitos dos fármacos , Suplementos Nutricionais , Melatonina/farmacologia , Animais , Temperatura Baixa/efeitos adversos , Immunoblotting , Masculino , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real
4.
J Pineal Res ; 67(2): e12580, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30968433

RESUMO

Recent studies have highlighted the involvement of melatonin in the regulation of energy homeostasis. In this study, we report that mice lacking melatonin receptor 1 (MT1 KO) gained more weight, had a higher cumulative food intake, and were more hyperphagic after fasting compared to controls (WT). In response to a leptin injection, MT1 KO mice showed a diminished reduction in body weight and food intake. To evaluate hypothalamic leptin signaling, we tested leptin-induced phosphorylation of the signal transducer and activator of transcription 3 (STAT3). Leptin failed to induce STAT3 phosphorylation in MT1 KO mice beyond levels observed in mice injected with phosphate-buffered saline (PBS). Furthermore, STAT3 phosphorylation within the arcuate nucleus (ARH) was decreased in MT1 KO mice. Leptin receptor mRNA levels in the hypothalamus of MT1 KO were significantly reduced (about 50%) compared to WT. This study shows that: (a) MT1 deficiency causes weight gain and increased food intake; (b) a lack of MT1 signaling induces leptin resistance; (c) leptin resistance is ARH region-specific; and (d) leptin resistance is likely due to down-regulation of the leptin receptor. Our data demonstrate that MT1 signaling is an important modulator of leptin signaling.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Leptina/metabolismo , Receptor MT1 de Melatonina/deficiência , Transdução de Sinais , Animais , Deleção de Genes , Leptina/genética , Masculino , Camundongos , Camundongos Knockout , Receptor MT1 de Melatonina/metabolismo
5.
Brain Res ; 1704: 40-46, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30222958

RESUMO

A local renin-angiotensin system (RAS) has been postulated in the pineal gland. In addition to angiotensin II (Ang II), other active metabolites have been described. In this study, we aimed to investigate a role for Ang IV in melatonin synthesis and the presence of its proposed (IRAP)/AT4 receptor (insulin-regulated aminopeptidase) in the pineal gland. The effect of Ang IV on melatonin synthesis was investigated in vitro using isolated pinealocytes. IRAP protein expression and activity were evaluated by Western blot and fluorimetry using Leu-4Me-ß-naphthylamide as a substrate. Melatonin was analyzed by HPLC, calcium content by confocal microscopy and cAMP by immunoassay. Ang IV significantly augmented the NE-induced melatonin synthesis to a similar degree as that achieved by Ang II. This Ang IV effect in pinealocytes appears to be mediated by an increase in the intracellular calcium content but not by cAMP. The (IRAP)/AT4 expression and activity were identified in the pineal gland, which were significantly higher in membrane fractions than in soluble fractions. Ang IV significantly reduced IRAP activity in the pineal membrane fractions. The main findings of the present study are as follows: (1) Ang IV potentiates NE-stimulated melatonin production in pinealocytes, (2) the (IRAP)/AT4 receptor is present in the rat pineal gland, and (3) Ang IV inhibits IRAP activity and increases pinealocytes [Ca2+]i. We conclude that Ang IV is an important component of RAS and modulates melatonin synthesis in the rat pineal gland.


Assuntos
Angiotensina II/análogos & derivados , Cistinil Aminopeptidase/metabolismo , Melatonina/biossíntese , Glândula Pineal/metabolismo , Angiotensina II/farmacologia , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Cálcio/metabolismo , Células Cultivadas , Masculino , Glândula Pineal/citologia , Glândula Pineal/efeitos dos fármacos , Ratos , Ratos Wistar
6.
Endocrinology ; 160(1): 193-204, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30462197

RESUMO

Previous studies have shown that bromocriptine mesylate (Bromo) lowers blood glucose levels in adults with type 2 diabetes mellitus; however, the mechanism of action of the antidiabetic effects of Bromo is unclear. As a dopamine receptor agonist, Bromo can alter brain dopamine activity affecting glucose control, but it also suppresses prolactin (Prl) secretion, and Prl levels modulate glucose homeostasis. Thus, the objective of the current study was to investigate whether Bromo improves insulin sensitivity via inhibition of Prl secretion. Male and female ob/ob animals (a mouse model of obesity and insulin resistance) were treated with Bromo and/or Prl. Bromo-treated ob/ob mice exhibited lower serum Prl concentration, improved glucose and insulin tolerance, and increased insulin sensitivity in the liver and skeletal muscle compared with vehicle-treated mice. Prl replacement in Bromo-treated mice normalized serum Prl concentration without inducing hyperprolactinemia. Importantly, Prl replacement partially reversed the improvements in glucose homeostasis caused by Bromo treatment. The effects of the Prl receptor antagonist G129R-hPrl on glucose homeostasis were also investigated. We found that central G129R-hPrl infusion increased insulin tolerance of male ob/ob mice. In summary, our findings indicate that part of Bromo effects on glucose homeostasis are associated with decrease in serum Prl levels. Because G129R-hPrl treatment also improved the insulin sensitivity of ob/ob mice, pharmacological compounds that inhibit Prl signaling may represent a promising therapeutic approach to control blood glucose levels in individuals with insulin resistance.


Assuntos
Bromocriptina/administração & dosagem , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Prolactina/metabolismo , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Humanos , Insulina/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Obesos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo
7.
Brain Res, v. 1794, p. 40-46, 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2572

RESUMO

A local renin-angiotensin system (RAS) has been postulated in the pineal gland. In addition to angiotensin II (Ang II), other active metabolites have been described. In this study, we aimed to investigate a role for Ang IV in melatonin synthesis and the presence of its proposed (IRAP)/AT4 receptor (insulin-regulated aminopeptidase) in the pineal gland. The effect of Ang IV on melatonin synthesis was investigated in vitro using isolated pinealocytes. IRAP protein expression and activity were evaluated by Western blot and fluorimetry using Leu-4Me-ß-naphthylamide as a substrate. Melatonin was analyzed by HPLC, calcium content by confocal microscopy and cAMP by immunoassay. Ang IV significantly augmented the NE-induced melatonin synthesis to a similar degree as that achieved by Ang II. This Ang IV effect in pinealocytes appears to be mediated by an increase in the intracellular calcium content but not by cAMP. The (IRAP)/AT4 expression and activity were identified in the pineal gland, which were significantly higher in membrane fractions than in soluble fractions. Ang IV significantly reduced IRAP activity in the pineal membrane fractions. The main findings of the present study are as follows: (1) Ang IV potentiates NE-stimulated melatonin production in pinealocytes, (2) the (IRAP)/AT4 receptor is present in the rat pineal gland, and (3) Ang IV inhibits IRAP activity and increases pinealocytes [Ca2+]i. We conclude that Ang IV is an important component of RAS and modulates melatonin synthesis in the rat pineal gland.

8.
Artigo em Inglês | MEDLINE | ID: mdl-29636725

RESUMO

Melatonin (Mel), a molecule that conveys photoperiodic information to the organisms, is also involved in the regulation of energy homeostasis. Mechanisms of action of Mel in the energy balance remain unclear; herein we investigated how Mel regulates energy intake and expenditure to promote a proper energy balance. Male Wistar rats were assigned to control, control + Mel, pinealectomized (PINX) and PINX + Mel groups. To restore a 24-h rhythm, Mel (1 mg/kg) was added to the drinking water exclusively during the dark phase for 13 weeks. After this treatment period, rats were subjected to a 24-h fasting test, an acute leptin responsiveness test and cold challenge. Mel treatment reduced food intake, body weight, and adiposity. When challenged to 24-h fasting, Mel-treated rats also showed reduced hyperphagia when the food was replaced. Remarkably, PINX rats exhibited leptin resistance; this was likely related to the capacity of leptin to affect body weight, food intake, and hypothalamic signal-transducer and activator of transcription 3 phosphorylation, all of which were reduced. Mel treatment restored leptin sensitivity in PINX rats. An increased hypothalamic expression of agouti-related peptide (Agrp), neuropeptide Y, and Orexin was observed in the PINX group while Mel treatment reduced the expression of Agrp and Orexin. In addition, PINX rats presented lower UCP1 protein levels in the brown adipose tissue and required higher tail vasoconstriction to get a proper thermogenic response to cold challenge. Our findings reveal a previously unrecognized interaction of Mel and leptin in the hypothalamus to regulate the energy balance. These findings may help to explain the high incidence of metabolic diseases in individuals exposed to light at night.

9.
Artigo em Inglês | MEDLINE | ID: mdl-29515520

RESUMO

The reproduction of seasonal breeders is modulated by exposure to light in an interval of 24 h defined as photoperiod. The interruption of reproductive functions in seasonally breeding rodents is accompanied by the suppression of the Kiss1 gene expression, which is known to be essential for reproduction. In non-seasonal male rodents, such as rats and mice, short-day photoperiod (SP) conditions or exogenous melatonin treatment also have anti-gonadotropic effects; however, whether photoperiod is able to modulate the puberty onset or Kiss1 gene expression in mice is unknown. In the present study, we investigated whether photoperiodism influences the sexual maturation of female mice via changes in the kisspeptin system. We observed that SP condition delayed the timing of puberty in female mice, decreased the hypothalamic expression of genes related to the reproductive axis and reduced the number of Kiss1-expressing neurons in the rostral hypothalamus. However, SP also reduced the body weight gain during development and affected the expression of neuropeptides involved in the energy balance regulation. When body weight was recovered via a reduction in litter size, the timing of puberty in mice born and raised in SP was advanced and the effects in hypothalamic mRNA expression were reverted. These results suggest that the SP delays the timing of puberty in female mice via changes in the kisspeptin system, although the effects on hypothalamic-pituitary-gonadal axis are likely secondary to changes in body weight gain.

10.
Physiol Rep ; 6(5)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29536670

RESUMO

Several metabolic adaptations emerge during pregnancy and continue through lactation, including increases in food intake and body weight, as well as insulin and leptin resistance. These maternal adaptations are thought to play a role in offspring viability and success. Using a model of attenuated maternal metabolic adaptations induced by ablation of the Socs3 gene in leptin receptor expressing cells (SOCS3 KO mice), our study aimed to investigate whether maternal metabolic changes are required for normal offspring development, and if their absence causes metabolic imbalances in adulthood. The litters were subjected to a cross-fostering experimental design to distinguish the prenatal and postnatal effects caused by maternal metabolic adaptations. Males either born or raised by SOCS3 KO mice showed reduced body weight until 8 weeks of life. Both adult males and females born or raised by SOCS3 KO mice also had lower body adiposity. Despite that, no significant changes in energy expenditure, glucose tolerance or insulin resistance were observed. However, males either born or raised by SOCS3 KO mice showed reduced brain mass in adulthood. Furthermore, animals born from SOCS3 KO mice also had lower proopiomelanocortin fiber density in the paraventricular nucleus of the hypothalamus. In conclusion, these findings indicate that the commonly observed metabolic changes in pregnancy and lactation are necessary for normal offspring growth and brain development.


Assuntos
Adaptação Fisiológica , Encéfalo/crescimento & desenvolvimento , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Adiposidade , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Metabolismo Energético , Feminino , Resistência à Insulina , Masculino , Camundongos , Gravidez , Pró-Opiomelanocortina/metabolismo , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Fatores Sexuais , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo
11.
Brain Struct Funct ; 223(5): 2229-2241, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29460051

RESUMO

The signal transducer and activator of transcription 5 (STAT5) is a transcription factor recruited by numerous cytokines. STAT5 is important for several physiological functions, including body and tissue growth, mammary gland development, immune system and lipid metabolism. However, the role of STAT5 signaling for brain functions is still poorly investigated, especially regarding cognitive aspects. Therefore, the objective of the present study was to investigate whether brain STAT5 signaling modulates learning and memory formation. For this purpose, brain-specific STAT5 knockout (STAT5 KO) mice were studied in well-established memory tests. Initially, we confirmed a robust reduction in STAT5a and STAT5b mRNA levels in different brain structures of STAT5 KO mice. STAT5 KO mice showed no significant alterations in metabolism, growth, somatotropic axis and spontaneous locomotor activity. In contrast, brain-specific STAT5 ablation impaired learning and memory formation in the novel object recognition, Barnes maze and contextual fear conditioning tests. To unravel possible mechanisms that might underlie the memory deficits of STAT5 KO mice, we assessed neurogenesis in the hippocampus, but no significant differences were observed between groups. On the other hand, reduced insulin-like growth factor-1 (IGF-1) mRNA expression was found in the hippocampus and hypothalamus of STAT5 KO mice. These findings collectively indicate that brain STAT5 signaling is required to attain normal learning and memory. Therefore, STAT5 is an important downstream cellular mechanism shared by several cytokines to regulate cognitive functions.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica/genética , Aprendizagem em Labirinto/fisiologia , Reconhecimento Psicológico/fisiologia , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais/fisiologia , Animais , Condicionamento Psicológico , Citocinas/metabolismo , Comportamento Exploratório/fisiologia , Medo/psicologia , Fator de Crescimento Insulin-Like I/metabolismo , Deficiências da Aprendizagem/genética , Camundongos , Camundongos Transgênicos , Nestina/genética , Nestina/metabolismo , Neurogênese/genética , RNA Mensageiro/metabolismo , Tempo de Reação/genética , Fator de Transcrição STAT5/genética
12.
Sci Rep ; 6: 22421, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26926925

RESUMO

Obesity reduces breastfeeding success and lactation performance in women. However, the mechanisms involved are not entirely understood. In the present study, female C57BL/6 mice were chronically exposed to a high-fat diet to induce obesity and subsequently exhibited impaired offspring viability (only 15% survival rate), milk production (33% reduction), mammopoiesis (one-third of the glandular area compared to control animals) and postpartum maternal behaviors (higher latency to retrieving and grouping the pups). Reproductive experience attenuated these defects. Diet-induced obese mice exhibited high basal pSTAT5 levels in the mammary tissue and hypothalamus, and an acute prolactin stimulus was unable to further increase pSTAT5 levels above basal levels. In contrast, genetically obese leptin-deficient females showed normal prolactin responsiveness. Additionally, we identified the expression of leptin receptors specifically in basal/myoepithelial cells of the mouse mammary gland. Finally, high-fat diet females exhibited altered mRNA levels of ERBB4 and NRG1, suggesting that obesity may involve disturbances to mammary gland paracrine circuits that are critical in the control of luminal progenitor function and lactation. In summary, our findings indicate that high leptin levels are a possible cause of the peripheral and central prolactin resistance observed in obese mice which leads to impaired lactation performance.


Assuntos
Lactação/fisiologia , Leptina/metabolismo , Glândulas Mamárias Animais/metabolismo , Obesidade/metabolismo , Prolactina/metabolismo , Animais , Dieta Hiperlipídica , Feminino , Hipotálamo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Neuregulina-1/genética , RNA Mensageiro/biossíntese , Receptor ErbB-4/genética , Fator de Transcrição STAT5/metabolismo
13.
Horm Behav ; 71: 60-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25896118

RESUMO

Prolactin and placental lactogens control mammary development and lactation as well as play an important role in maternal behaviors. However, the molecular mechanisms in the brain responsible for this regulation remain largely unknown. Therefore, the present study investigated whether Signal Transducer and Activator of Transcription 5 (STAT5) signaling in the brain, the key transcriptional factor recruited by prolactin receptor and other hormones, is required for postpartum maternal behavior, maintenance of lactation and offspring growth. Neuronal ablation of STAT5 impaired the control of prolactin secretion and reduced the hypothalamic expression of suppressors of cytokine signaling (i.e., SOCS3 and CISH). In addition, neuronal STAT5 deletion attenuated the hyperphagia commonly observed during lactation by decreasing the hypothalamic expression of orexigenic neurotransmitters such as the neuropeptide Y and agouti-related protein. The lower food intake of lactating neuron-specific STAT5 knockout females resulted in reduced milk production and offspring growth. Unexpectedly, postpartum maternal behavior expression was not impaired in neuron-specific STAT5 knockout females. On the contrary, the latency to retrieve and group the pups into the nest was reduced in mutant dams. Finally, we demonstrated that approximately 30% of recorded neurons in the medial preoptic area were acutely depolarized by prolactin suggesting that fast STAT5-independent signaling pathways may be involved in the regulation of maternal behaviors. Overall, our results revealed important information about the molecular mechanisms recruited by hormones to orchestrate the activation of neural circuitries engaged in the induction of maternal care.


Assuntos
Lactação/fisiologia , Comportamento Materno/fisiologia , Neurônios/fisiologia , Período Pós-Parto/psicologia , Fator de Transcrição STAT5/fisiologia , Proteína Relacionada com Agouti/metabolismo , Animais , Feminino , Expressão Gênica/fisiologia , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Patch-Clamp , Área Pré-Óptica/metabolismo , Prolactina/metabolismo , Transdução de Sinais
14.
Mol Metab ; 4(3): 237-45, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25737950

RESUMO

OBJECTIVE: During pregnancy, women normally increase their food intake and body fat mass, and exhibit insulin resistance. However, an increasing number of women are developing metabolic imbalances during pregnancy, including excessive gestational weight gain and gestational diabetes mellitus. Despite the negative health impacts of pregnancy-induced metabolic imbalances, their molecular causes remain unclear. Therefore, the present study investigated the molecular mechanisms responsible for orchestrating the metabolic changes observed during pregnancy. METHODS: Initially, we investigated the hypothalamic expression of key genes that could influence the energy balance and glucose homeostasis during pregnancy. Based on these results, we generated a conditional knockout mouse that lacks the suppressor of cytokine signaling-3 (SOCS3) only in leptin receptor-expressing cells and studied these animals during pregnancy. RESULTS: Among several genes involved in leptin resistance, only SOCS3 was increased in the hypothalamus of pregnant mice. Remarkably, SOCS3 deletion from leptin receptor-expressing cells prevented pregnancy-induced hyperphagia, body fat accumulation as well as leptin and insulin resistance without affecting the ability of the females to carry their gestation to term. Additionally, we found that SOCS3 conditional deletion protected females against long-term postpartum fat retention and streptozotocin-induced gestational diabetes. CONCLUSIONS: Our study identified the increased hypothalamic expression of SOCS3 as a key mechanism responsible for triggering pregnancy-induced leptin resistance and metabolic adaptations. These findings not only help to explain a common phenomenon of the mammalian physiology, but it may also aid in the development of approaches to prevent and treat gestational metabolic imbalances.

15.
Growth Horm IGF Res ; 24(6): 268-70, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25312793

RESUMO

Under physical activity a wide variety of cellular metabolic products and hormones are altered in the blood stream, including lactate, a metabolite of pyruvate reduction, and growth hormone (GH). Although a positive correlation between lactate and GH seems to exist during exercise, the role of lactate as a mediator of GH production has never been investigated. Thus, the aim of this study was to investigate whether lactate could activate the somatotropic axis and stimulate GH synthesis/release, contributing to the enhanced somatotropic activity described in exercise conditions. Male adult Wistar rats were acutely treated with sodium lactate [15 or 150µmols, i.p.] at the beginning of the active period (Zeitgeber time 13-14), and euthanized by decapitation 30, 60 and 120min after the injections. Serum GH concentration were determined using ELISA and Gh and Igf-1 mRNA expressions were quantified by qPCR. Serum GH concentration and Gh mRNA expression were increased 30min after lactate injections for both treatments. However, [15µmols] of lactate injection kept GH serum concentration chronically high throughout the experimental period. Igf-1 mRNA expression was increased only 60min after challenge with [15µmols] of lactate, time point which corresponded to 30min after the serum GH peak. The present results led us to conclude that lactate mediates activation of the somatotropic axis, therefore emphasizing its possible role on GH synthesis/release, and further indicating that it could play a part on the increased GH secretion observed in exercise conditions.


Assuntos
Hormônio do Crescimento/sangue , Fator de Crescimento Insulin-Like I/metabolismo , Ácido Láctico/farmacologia , Fígado/metabolismo , Hipófise/metabolismo , Animais , Ensaio de Imunoadsorção Enzimática , Hormônio do Crescimento/genética , Fator de Crescimento Insulin-Like I/genética , Fígado/efeitos dos fármacos , Masculino , Hipófise/efeitos dos fármacos , RNA Mensageiro/genética , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
Mol Metab ; 3(6): 608-18, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25161884

RESUMO

Therapies that improve leptin sensitivity have potential as an alternative treatment approach against obesity and related comorbidities. We investigated the effects of Socs3 gene ablation in different mouse models to understand the role of SOCS3 in the regulation of leptin sensitivity, diet-induced obesity (DIO) and glucose homeostasis. Neuronal deletion of SOCS3 partially prevented DIO and improved glucose homeostasis. Inactivation of SOCS3 only in LepR-expressing cells protected against leptin resistance induced by HFD, but did not prevent DIO. However, inactivation of SOCS3 in LepR-expressing cells protected mice from diet-induced insulin resistance by increasing hypothalamic expression of Katp channel subunits and c-Fos expression in POMC neurons. In summary, the regulation of leptin signaling by SOCS3 orchestrates diet-induced changes on glycemic control. These findings help to understand the molecular mechanisms linking obesity and type 2 diabetes, and highlight the potential of SOCS3 inhibitors as a promising therapeutic approach for the treatment of diabetes.

17.
Mol Vis ; 20: 742-52, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24940028

RESUMO

PURPOSE: Circadian rhythms are central to vision and retinal physiology. A circadian clock located within the retina controls various rhythmic processes including melatonin synthesis in photoreceptors. In the present study, we evaluated the rhythmic expression of clock genes and clock output genes in retinal explants maintained for several days in darkness. METHODS: Retinas were dissected from Wistar rats, either wild-type or from the Per1-luciferase transgenic line housed under a daily 12 h:12 h light-dark cycle (LD12/12), and put in culture at zeitgeber time (ZT) 12 on semipermeable membranes. Explants from wild-type rats were collected every 4 h over 3 days, and total RNA was extracted, quantified, and reverse transcribed. Gene expression was assessed with quantitative PCR, and the periodicity of the relative mRNA amounts was assessed with nonlinear least squares fitting to sine wave functions. Bioluminescence in explants from Per1-luciferase rats was monitored for several days under three different culture protocols. RESULTS: Rhythmic expression was found for all studied clock genes and for clock downstream targets such as c-fos and arylalkylamine N-acetyltransferase (Aanat) genes. Clock and output genes cycled with relatively similar periods and acrophases (peaks of expression during subjective night, except c-fos, which peaked around the end of the subjective day). Data for Per1 were confirmed with bioluminescence monitoring, which also permitted culture conditions to be optimized to study the retina clock. CONCLUSIONS: Our work shows the free-running expression profile of multiple clock genes and potential clock targets in mammalian retinal explants. This research further strengthens the notion that the retina contains a self-sustained oscillator that can be functionally characterized in organotypic culture.


Assuntos
Proteínas CLOCK/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica , Retina/metabolismo , Técnicas de Cultura de Tecidos , Animais , Relógios Biológicos/genética , Proteínas CLOCK/metabolismo , Morte Celular/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Meios de Cultura/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Luciferases/metabolismo , Medições Luminescentes , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Retina/citologia , Retina/efeitos dos fármacos , Fatores de Tempo
18.
J Pineal Res ; 57(1): 67-79, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24819547

RESUMO

Melatonin is a neurohormone that works as a nighttime signal for circadian integrity and health maintenance. It is crucial for energy metabolism regulation, and the diabetes effects on its synthesis are unresolved. Using diverse techniques that included pineal microdialysis and ultrahigh-performance liquid chromatography, the present data show a clear acute and sustained melatonin synthesis reduction in diabetic rats as a result of pineal metabolism impairment that is unrelated to cell death. Hyperglycemia is the main cause of several diabetic complications, and its consequences in terms of melatonin production were assessed. Here, we show that local high glucose (HG) concentration is acutely detrimental to pineal melatonin synthesis in rats both in vivo and in vitro. The clinically depressive action of high blood glucose concentration in melatonin levels was also observed in type 1 diabetes patients who presented a negative correlation between hyperglycemia and 6-sulfatoxymelatonin excretion. Additionally, high-mean-glycemia type 1 diabetes patients presented lower 6-sulfatoxymelatonin levels when compared to control subjects. Although further studies are needed to fully clarify the mechanisms, the present results provide evidence that high circulating glucose levels interfere with pineal melatonin production. Given the essential role played by melatonin as a powerful antioxidant and in the control of energy homeostasis, sleep and biological rhythms and knowing that optimal glycemic control is usually an issue for patients with diabetes, melatonin supplementation may be considered as an additional tool to the current treatment.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Hiperglicemia/metabolismo , Melatonina/análogos & derivados , Animais , Arilalquilamina N-Acetiltransferase/metabolismo , Sobrevivência Celular , Diabetes Mellitus Experimental/complicações , Humanos , Hiperglicemia/etiologia , Masculino , Melatonina/metabolismo , Microdiálise , Glândula Pineal/metabolismo , Ratos , Ratos Wistar
19.
Invest Ophthalmol Vis Sci ; 52(10): 7416-22, 2011 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-21896852

RESUMO

PURPOSE: Retinal melatonin synthesis occurs in the photoreceptor layer in a circadian manner, controlling several physiologic rhythmic phenomena, besides being the most powerful natural free radical scavenger. The purpose of the present work was to evaluate the diurnal profile of retinal melatonin content and the regulation of its synthesis in the retina of streptozotocin-induced diabetic rats. METHODS: Diabetes was induced in male Wistar rats (12 hour-12 hour light/dark cycle) with streptozotocin. Control, diabetic, and insulin-treated diabetic animals were killed every 3 hours throughout the light-dark cycle. Retinal melatonin content was measured by high-performance liquid chromatography, arylalkylamine N-acetyltransferase (AANAT) activity was analyzed by radiometric assay, Bmal1 gene expression was determined by qPCR, and cyclic adenosine monophosphate (cAMP) content was assessed by ELISA. RESULTS: Control animals showed a clear retinal melatonin and AANAT activity daily rhythm, with high levels in the dark. Diabetic rats had both parameters reduced, and the impairment was prevented by immediate insulin treatment. In addition, the Bmal1 expression profile was lost in the diabetic group, and the retinal cAMP level was reduced 6 hours after lights on and 3 hours after lights off. CONCLUSIONS: The present work shows a melatonin synthesis reduction in diabetic rats retinas associated with a reduction in AANAT activity that was prevented by insulin treatment. The Bmal1-flattened gene expression and the cAMP reduction seem to be responsible for the AANAT activity decrease in diabetic animals. The melatonin synthesis reduction observed in the pineal gland of diabetic rats is also observed in a local melatonin tissue synthesizer, the retina.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/metabolismo , Melatonina/biossíntese , Retina/metabolismo , Fatores de Transcrição ARNTL/genética , Animais , Arilalquilamina N-Acetiltransferase/metabolismo , Sobrevivência Celular , Cromatografia Líquida de Alta Pressão , Ritmo Circadiano/fisiologia , AMP Cíclico/metabolismo , Fragmentação do DNA , Ensaio de Imunoadsorção Enzimática , Expressão Gênica , Masculino , Glândula Pineal/cirurgia , Reação em Cadeia da Polimerase , Radiometria , Ratos , Ratos Wistar
20.
Investigative Ophthalmology & Visual Science ; 52(10): 7416-7422, 22 sept.2011.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1063621

RESUMO

Retinal melatonin synthesis occurs in the photoreceptor layer in a circadian manner, controlling several physiologic rhythmic phenomena, besides being the most powerful natural free radical scavenger. The purpose of the present work was to evaluate the diurnal profile of retinal melatonin content and the regulation of its synthesis in the retina of streptozotocin-induced diabetic rats.Diabetes was induced in male Wistar rats (12 hour-12 hour light/dark cycle) with streptozotocin. Control, diabetic, and insulin-treated diabetic animals were killed every 3 hours throughout the light-dark cycle. Retinal melatonin content was measured by high-performance liquid chromatography, arylalkylamine N-acetyltransferase (AANAT) activity was analyzed by radiometric assay, Bmal1 gene expression was determined by qPCR, and cyclic adenosine monophosphate (cAMP) content was assessed by ELISA.Control animals showed a clear retinal melatonin and AANAT activity daily rhythm, with high levels in the dark. Diabetic rats had both parameters reduced, and the impairment was prevented by immediate insulin treatment. In addition, the Bmal1 expression profile was lost in the diabetic group, and the retinal cAMP level was reduced 6 hours after lights on and 3 hours after lights off.The present work shows a melatonin synthesis reduction in diabetic rats retinas associated with a reduction in AANAT activity that was prevented by insulin treatment. The Bmal1-flattened gene expression and the cAMP reduction seem to be responsible for the AANAT activity decrease in diabetic animals. The melatonin synthesis reduction observed in the pineal gland of diabetic rats is also observed in a local melatonin tissue synthesizer, the retina.


Assuntos
Ratos , Células Fotorreceptoras , Estreptozocina/metabolismo , Melatonina/análise , Receptores de Melatonina/administração & dosagem , Diabetes Mellitus Experimental/induzido quimicamente , Insulina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA