Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38558339

RESUMO

Winery effluents containing high ethanol concentrations and diverse organic matter are ideal substrates for producing medium-chain carboxylic acids via fermentation and chain elongation. However, the process needs to be better understood. This study presents novel insights into the bioconversion mechanisms of medium-chain carboxylic acids by correlating fermentation and chain elongation kinetic profiles with the study of microbial communities at different pH (5 to 7) conditions and temperatures (30 to 40 °C). It was found that high productivities of MCCA were obtained using a native culture and winery effluents as a natural substrate. Minor pH variations significantly affected the metabolic pathway of the microorganisms for MCCA production. The maximal productivities of hexanoic (715 mg/L/d) and octanoic (350 mg/L/d) acids were found at pH 6 and 35 °C. Results evidence that the presence of Clostridium, Bacteroides, and Negativicutes promotes the high productions of MCCA. The formation of heptanoic acid was favor when Mogibacterium and Burkholderia were present.

2.
Water Environ Res ; 95(4): e10859, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37002800

RESUMO

The study aims to determine SARS-CoV-2 RNA in sewage of Cancun wastewater treatment plants, the main touristic destination of Mexico, and to estimate the infected persons during the sampling period. SARS-CoV-2 RNA traces were detected in the inlet of the five plants during almost all the sampling months. However, there is no presence of SARS-CoV-2 RNA traces in the effluent of the five WWTPs during the study period. ANOVA analysis showed differences in the concentrations of RNA traces of SARS-CoV-2 between the sample dates, but no differences were found from one WWTP to another. Estimated infected individuals by Markov chain Monte Carlo simulation are higher (between 77% and 91%) than the cases reported by the health authority. Wastewater monitoring and the estimation of infected individuals are a helpful tool, because estimation provides early warning signs on how broadly SARS-CoV-2 is circulating in the city, and led to the authorities to take measures wisely. PRACTITIONER POINTS: There is no presence of SARS-CoV-2 RNA traces in the effluent of the facilities, suggesting the effectiveness of treatment. Surveillance of viral RNA concentrations at treatment plants revealed presence in the influent of five plants Estimated infected individuals by MCMC simulation are higher than cases reported by health authority Environmental surveillance approach in wastewater influent is helpful to identify the clusters and to take informed decisions.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Águas Residuárias , RNA Viral/genética , México , Região do Caribe
3.
Sci Total Environ ; 882: 163545, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37080313

RESUMO

Antibiotic resistance genes (ARGs) released into the environment are an emerging human and environmental health concern, including ARGs spread in wastewater treatment effluents. In low-to-middle income countries (LMICs), an alternate wastewater treatment option instead of conventional systems are low-energy, high-rate algal ponds (HRAP) that use microalgae-bacteria aggregates (MABA) for waste degradation. Here we studied the robustness of ARG removal in MABA-based pilot-scale outdoor systems for 140 days of continuous operation. The HRAP system successfully removed 73 to 88 % chemical oxygen demand and up to 97.4 % ammonia, with aggregate size increasing over operating time. Fourteen ARG classes were identified in the HRAP influent, MABA, and effluent using metagenomics, with the HRAP process reducing total ARG abundances by up to 5-fold from influent to effluent. Parallel qPCR analyses showed the HRAP system significantly reduced exemplar ARGs (p < 0.05), with 1.2 to 4.9, 2.7 to 6.3, 0 to 1.5, and 1.2 to 4.8 log-removals for sul1, tetQ, blaKPC, and intl1 genes, respectively. Sequencing of influent, effluent and MABAs samples showed associated microbial communities differed significantly, with influent communities by Enterobacteriales (clinically relevant ARGs carrying bacteria), which were less evident in MABA and effluent. In this sense, such bacteria might be excluded from MABA due to their good settling properties and the presence of antimicrobial peptides. Microalgae-bacteria treatment systems steadily reduced ARGs from wastewater during operation time, using sunlight as the energetic driver, making them ideal for use in LMIC wastewater treatment applications.


Assuntos
Microalgas , Microbiota , Purificação da Água , Humanos , Eliminação de Resíduos Líquidos , Microalgas/metabolismo , Águas Residuárias , Bactérias/genética , Antibacterianos/metabolismo , Genes Bacterianos
4.
Environ Technol ; 44(12): 1863-1876, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-34898377

RESUMO

This work studied the formation of aggregates used for wastewater treatment in high-rate algal ponds (HRAP). For this, the establishment of microalgae-bacteria aggregates in these systems was evaluated, considering strategies for the inoculation and start-up. Two HRAP were operated in parallel, at first in batch mode and then in continuous flow. The wastewater treatment was efficient, with removal rates around 80% for COD and N-ammoniacal. Volatile suspended solids and chlorophyll for the culture grew continuously reached a concentration of 548 ± 11 mg L-1 and 7.8 mg L-1, respectively. Larger photogranules were observed when the system was placed in a continuous regime. The protein fraction of extracellular polymeric substances was identified as a determinant in photogranules formation. During the continuous regime, more than 50% of the biomass was higher than 0.2 mm, flocculation efficiency of 78 ± 6%, and the volumetric sludge index of 32 ± 5 mL g-1. The genetic sequencing showed the growth of cyanobacteria in the aggregate and the presence of microalgae from the chlorophytes and diatoms groups in the final biomass.


Assuntos
Microalgas , Águas Residuárias , Eliminação de Resíduos Líquidos , Lagoas/microbiologia , Bactérias , Biomassa
5.
J Water Process Eng ; 50: 103337, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36407934

RESUMO

The biotransformation of the SARS-CoV-2 antiviral drugs, ribavirin and tenofovir, was studied in methanogenic bioreactors. The role of iron-rich minerals, recovered from a metallurgic effluent, on the biotransformation process was also assessed. Enrichment of anaerobic sludge with recovered minerals promoted superior removal efficiency for both antivirals (97.4 % and 94.7 % for ribavirin and tenofovir, respectively) as compared to the control bioreactor lacking minerals, which achieved 58.5 % and 37.9 % removal for the same drugs, respectively. Further analysis conducted by liquid chromatography coupled to mass spectroscopy revealed several metabolites derived from the biotransformation of both antivirals. Interestingly, tracer analysis with 13CH4 revealed that anaerobic methane oxidation coupled to Fe(III) reduction occurred in the enriched bioreactor, which was reflected in a lower content of methane in the biogas produced from this system, as compared to the control bioreactor. This treatment proposal is suitable within the circular economy concept, in which recovered metals from an industrial wastewater are applied in bioreactors to create a biocatalyst for promoting the biotransformation of emerging pollutants. This strategy may be appropriate for the anaerobic treatment of wastewaters originated from hospitals, as well as from the pharmaceutical and chemical sectors.

6.
Chemosphere ; 308(Pt 1): 136305, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36064009

RESUMO

The main goal of this study was to assess the methane production in a biotrickling filter (BTF) using a synthetic gas mixture (H2/CO2: 60/40), evaluating the effect of the empty bed gas residence time (EBRT), pH, and temperature. The BTF was inoculated with acclimated granular anaerobic sludge. Three EBRT were tested: 11.6, 5.8, and 2.9 h. The decrease in EBRT (from 11.6 to 5.8 h) increased 1.3-fold the methane content (69 ± 3%) with H2 and CO2 removals of 100% and 24 ± 6%, respectively. The following reduction to 2.9 h showed no effect on CH4 content. The increment of the pH had no significant effect; however, the highest CH4 percentage (74%) was observed at a pH of 8.5. The system showed flexibility to adapt to changes in temperature without drastically diminishing CH4 concentration. In these stages, the principal hydrogenotrophic archaea detected was Methanobacterium flexile. Soluble microbial products such as butanol, caproate, and iso-valerate were detected in all the operating stages. This study demonstrates the potential of methane generation from a dark fermentation gaseous effluent.


Assuntos
Dióxido de Carbono , Metano , Anaerobiose , Reatores Biológicos/microbiologia , Butanóis , Caproatos , Fermentação , Hidrogênio , Esgotos/microbiologia , Valeratos
7.
Bioresour Technol ; 346: 126456, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34863848

RESUMO

This study evaluated different carbon and nitrogen sources on the growth and production of carbohydrates, protein, lipids, and chlorophyll of Spirulina platensis LEB-52 through an easy successive methodology under aqueous conditions. Spirulina platensis was cultivated at 120 rpm and light intensity of 156 µmol m-2 s-1 in a 500 mL Erlenmeyer flask with a working volume of 250 mL, using Zarrouk's medium. The biomass, carbohydrate, and protein production together with the specific growth rate did not show a significant difference between NaHCO3 and Na2CO3. The salts of urea and ammonium are not an alternative nitrogen sources of low cost for Spirulina platensis cultivation. From the experimental results obtained in this study, a successful estimate of carbohydrate, protein, lipids, and chlorophyll content inside Spirulina platensis was achieved without use advanced analytical techniques, allowing saves resources and time. This method can be extrapolated to other microorganisms and cultivation regimens.


Assuntos
Nitrogênio , Spirulina , Biomassa , Carboidratos , Carbono , Clorofila , Cinética , Lipídeos
8.
Water Sci Technol ; 84(3): 712-724, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34388129

RESUMO

This research investigates the effect of mixing wavelength light photoperiods (12 h blue, 8 h blue: 4 h green, 4 h blue: 8 h green, and 12 h green) and N/P ratios (1.3 to 8.3) on the growth microalgae-bacteria systems, organic matter, and nutrient removals. The highest microalgae-bacteria growth performance (µ = 0.2 d-1, 481.1 ± 15.3 mg DW L-1) was observed when a 8 h blue: 4 h green mixed wavelength and a low N/P ratio were used. For both N/P ratios, biomass productivity was favored when using the blue light dominated at longer time periods. Mechanisms for nitrogen removal by assimilation depend on the N/P ratio, achieving assimilation between 49 and 65% at a low N/P ratio. High nitrogen removal (>50%) showed a strong relation with alkalinity culture conditions (pH > 8.5). The mixing of wavelength photoperiods seems to be a promising strategy to achieve high biomass productivity and nutrient removal. However, for optimal conditions, N/P ratios in the wastewater should be considered.


Assuntos
Microalgas , Purificação da Água , Bactérias , Biomassa , Nitrogênio/análise , Fósforo , Fotoperíodo , Águas Residuárias
9.
Chemosphere ; 275: 129898, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33667771

RESUMO

Biogas production through anaerobic mesophilic digestion is the most straightforward biofuel production route integrated into microalgae-bacteria wastewater treatment plants. Improvement of this biofuel route without adding pretreatment units is possible through the temperature increase. This paper presents a comprehensive evaluation of the transitory effect of different temperatures (35 °C and 55 °C) and hydraulic retention times (HRT) of 15 and 30 d on the long-term methane production using non-pretreated microalgae-bacteria aggregates as a feedstock. The thermophilic transition from mesophilic inoculum adapted to microalgae-bacteria aggregate increased 1.7-fold the methane production (0.41 m3CH4 kgVS-1) at HRT of 30 d. A substantial decrease in the microbial community's diversity present in the anaerobic reactor was observed when thermophilic conditions were applied, explaining the long adaptation period needed. The increase of the operative temperature condition promotes changes in the dominance pathway of methanogenesis from hydrogenotrophic to acetolactic. The energy balance assessment showed a positive net energy ratio when the digester was operated at an HRT of 30 d. A maximum net energy ratio of 1.5 was achieved at mesophilic temperature. This study demonstrated, based on experimental data, that microalgal digestion with an HRT of 30 d favors energy self-sustainability in microalgal wastewater treatment plants.


Assuntos
Biocombustíveis , Microalgas , Anaerobiose , Bactérias , Reatores Biológicos , Metano , Temperatura
10.
Chemosphere ; 272: 129865, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33592509

RESUMO

This investigation evaluates a two-stage process to treat highly concentrated winery effluents, including a thermophilic methanogenic stage. The inoculum adaptation, the effect of the organic loading rates on both stages, and the methanogenic reactor's feeding frequency on the process performance were studied. An active thermophilic inoculum was obtained by a one-step temperature increase from 35 to 55 °C. The application of organic loads above 120 kg COD m-3 d-1 in the acidogenic stage ensured the highest acetic acid concentration, while methane production rates as high as 7.1 Nm3 CH4 m-3 d-1 and a yield of 348 L CH4 kg-1 COD were obtained in the thermophilic methanogenic stage using an organic loading rate of 29.9 kg COD m-3 d-1. However, a lower removal of organic matter was observed under that condition. Lower feeding frequencies improved methane productivity and yield, suggesting that this parameter is a useful process optimization tool.


Assuntos
Reatores Biológicos , Metano , Ácidos , Anaerobiose
11.
Bioresour Technol ; 323: 124610, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33429315

RESUMO

Many microorganisms can produce intracellular and extracellular biopolymers, such as polyhydroxyalkanoates (PHA). Despite PHA's benefits, their widespread at the industrial level has not occurred due mainly to high production costs. PHA production under a biorefinery scheme is proposed to improve its economic viability. In this context, purple non-sulfur bacteria (PNSB) are ideal candidates to produce PHA and other substances of economic interest. This review describes the PHA production by PNSB under different metabolic pathways, by using a wide range of wastes and under diverse operational conditions such as aerobic and anaerobic metabolism, irradiance level, light or dark conditions. Some strategies, such as controlling the feed regime, biofilm reactors, and open photobioreactors in outdoor conditions, were identified from the literature review as the approach needed to improve the process's economic viability when using mixed cultures of PNSB and wastes as substrates.


Assuntos
Poli-Hidroxialcanoatos , Biopolímeros , Reatores Biológicos , Proteobactérias
12.
Bioresour Technol ; 319: 124182, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33038653

RESUMO

This work characterizes and comparatively assess two cation exchange membranes (PSEBS SU22 and CF22 R14) and one bipolar membrane (FBM) in microbial electrolysis cells (MEC), fed either by acetate or the mixture of volatile fatty acids as substrates. The PSEBS SU22 is a new, patent-pending material, while the CF22 R14 and FBM are developmental and commercialized products. Based on the various MEC performance measures, membranes were ranked by the EXPROM-2 method to reveal which of the polymeric membranes could be more beneficial from a complex, H2 production efficiency viewpoint. It turned out that the substrate-type influenced the application potential of the membranes. Still, in total, the PSEBS SU22 was found competitive with the other alternative materials. The evaluation of MEC was also supported by analyzing anodic biofilms following electroactive bacteria's development over time.


Assuntos
Fontes de Energia Bioelétrica , Eletrodos , Eletrólise , Ácidos Graxos Voláteis , Hidrogênio , Troca Iônica
13.
J Water Process Eng ; 40: 101815, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35592727

RESUMO

The SARS-CoV-2 virus causing COVID-19 is spread in sewage by the stool of infected individuals, and viral material in sewage can be quantified using molecular tools. This study aimed to monitor the presence of SARS-CoV-2 RNA in sewage in Mexico based on RdRP, S, and N gene analysis. The influent, effluent, and activated sludge from two domestic wastewater treatment plants (WWTP) were evaluated from the early stage of the epidemic to July 2020. Additionally, sampling points in sewer systems were examined, comparing two different RNA-concentration methods: centrifugal ultrafiltration and adsorption-based methods. The adsorption method resulted in RNA titration that was two orders of magnitude higher than with ultrafiltration (up to 3.38 log10 copies RdRP gene/mL of sewage). The surveillance of SARS-CoV-2 RNA in the influent of two WWTP correlated with the cumulative COVID-19 cases in Queretaro city. The higher RNA level in secondary sludge compared to influent suggests that viral RNA becomes concentrated in activated sludge. This result supports SARS-CoV-2 RNA removal in WWTP, where all effluent samples were negative for virus quantification. This work proves that wastewater-based epidemiology is a very valuable tool in developing countries where diagnostic tests for COVID-19 are limited.

14.
Bioresour Technol ; 321: 124458, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33338739

RESUMO

The microbial co-cultures or consortia are a natural set of microorganisms formed from different species or the same species but different strains, in which members can interact with each other. The co-culture systems have wide variety of technological applications such as the production of foods, treatment of wastewater, removal of toxic substances, environmental recovery, and all these without the need to work in sterile conditions. Therefore, the need of understanding communication mechanisms between cell-to-cell within co-culture will allow to construct and to program their biological behavior from the use of complex substrates to produce biocompounds. The technology of co-culture systems enables the development of biorefinery platforms to obtain biofuels, and high value compounds through biomass transformation by sustainable process. This review focuses on understanding the roles of consortia microbial to design and built co-culture systems to produce high value compounds in terms a sustainable biorefinery.


Assuntos
Biocombustíveis , Microalgas , Biomassa , Técnicas de Cocultura , Águas Residuárias
15.
Waste Manag ; 120: 76-84, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33285376

RESUMO

A two-stage bioreactor operated under anoxic denitrifying conditions was evaluated for desulfurization of synthetic biogas laden with H2S concentrations between 2500 and 10,000 ppmv. H2S removal efficiencies higher than 95% were achieved for H2S loads ranging from 16.2 to 51.9 gS mliquid-3h-1. Average H2S oxidation performance (fraction of S-SO42- produced per gram of S-H2S absorbed) ranged between 8.2 ± 1.2 and 18.7 ± 5.3% under continuous liquid operation. Nitrogen mass balance showed that only 2-6% of the N-NO3- consumed was directed to biomass growth and the rest was directed to denitrification. Significant changes in the bacterial community composition did not hinder the H2S removal efficiency. The bioreactor configuration proposed avoided clogging issues due to elemental sulfur accumulation as commonly occurs in packed bed bioreactors devoted to H2S-rich biogas desulfurization.


Assuntos
Biocombustíveis , Sulfeto de Hidrogênio , Reatores Biológicos , Desnitrificação , Nitratos , Enxofre
16.
MethodsX ; 7: 100754, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32021817

RESUMO

Biohydrogen production potential (BHP) depends on several factors like inoculum source, substrate, pH, among many others. Batch assays are the most common strategy to evaluate such parameters, where the comparison is a challenging task due to the different procedures used. The present method introduces the first internationally validated protocol, evaluated by 8 independent laboratories from 5 different countries, to assess the biohydrogen potential. As quality criteria, a coefficient of variation of the cumulative hydrogen production (H max) was defined to be <15 %. Two options to run BHP batch tests were proposed; a manual protocol with periodic measurements of biogas production, needing conventional laboratory materials and analytical equipment for biogas characterization; and an automatic protocol, which is run in a device developed for online measurements of low biogas production. The detailed procedures for both protocol options are presented, as well as data validating them. The validation showed acceptable repeatability and reproducibility, measured as intra- and inter-laboratory coefficient of variation, which can be reduced up to 9 %.

17.
Bioelectrochemistry ; 133: 107479, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32086178

RESUMO

In this work, two commercialized anion-exchange membranes (AEMs), AMI-7001 and AF49R27, were applied in microbial electrolysis cells (MECs) and compared with a novel AEM (PSEBS CM DBC, functionalized with 1,4-diazabicyclo[2.2.2]octane) to produce biohydrogen. The evaluation regarding the effect of using different AEMs was carried out using simple (acetate) and complex (mixture of acetate, butyrate and propionate to mimic dark fermentation effluent) substrates. The MECs equipped with various AEMs were assessed based on their electrochemical efficiencies, H2 generation capacities and the composition of anodic biofilm communities. pH imbalances, ionic losses and cathodic overpotentials were taken into consideration together with changes to substantial AEM properties (particularly ion-exchange capacity, ionic conductivity, area- and specific resistances) before and after AEMs were applied in the process to describe their potential impact on the behavior of MECs. It was concluded that the MECs which employed the PSEBS CM DBC membrane provided the highest H2 yield and lowest internal losses compared to the two other separators. Therefore, it has the potential to improve MECs.


Assuntos
Fontes de Energia Bioelétrica , Geobacter/metabolismo , Hidrogênio/metabolismo , Membranas Artificiais , Piperazinas/química , Compostos de Amônio Quaternário/química , Ânions/química , Fontes de Energia Bioelétrica/microbiologia , Eletrólise , Desenho de Equipamento , Estudos de Viabilidade
18.
Appl Biochem Biotechnol ; 187(1): 140-151, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29911268

RESUMO

Winery wastewaters are acidic effluents with high content of organic matter and nutrients. Different initial values of chemical oxygen demand (COD), ranging from 4 to 50 g L-1, were tested in batch assays to evaluate the fermentative hydrogen production followed by a methane production step. The influence of adding a typical nutrient solution for hydrogen production was investigated. Nutrients include N-NH4, Mg, Fe, Co, Mn, I, Ni, and Zn. The best hydrogen production potential was obtained at a COD of 50 g L-1 without nutrient addition. This condition produced 528 mL H2 L-1. At a COD ≥ 35 g L-1, tests with only WW had a hydrogen potential 1.6 to 1.9 times higher than did tests where nutrients were added. The use of added nutrients reduced the hydrogen production by producing additional reduced acids, such as propionate and valerate. In a second stage, biomethane potential was evaluated using the effluent of a selected condition from hydrogen production tests. The methane production reached values of 207 ± 2.2 mL CH4 g-1 COD at 10 g COD L-1. The COD affected the specific methane production. The results of this study demonstrated the potential of winery effluents as a substrate for sequential hydrogen and methane production to increase the energy recovery from this effluent, with a maximum energetic yield and productivity of 7.15 kJ gCOD-1 and 11.51 kJ d-1.


Assuntos
Hidrogênio/metabolismo , Minerais/farmacologia , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/microbiologia
19.
Biotechnol Lett ; 40(3): 569-575, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29218548

RESUMO

OBJECTIVES: To assess the effect of one-step temperature increase, from 35 to 55 °C, on the methane production of a mesophilic granular sludge (MGS) treating wine vinasses and the effluent of a hydrogenogenic upflow anaerobic sludge blanket (UASB) reactor. RESULTS: One-step temperature increase from mesophilic to thermophilic conditions improved methane production regardless of the substrate tested. The biomethane potentials obtained under thermophilic conditions were 1.8-2.9 times higher than those obtained under mesophilic conditions. The MGS also performed better than an acclimated thermophilic digestate, producing 2.2-2.5 times more methane than the digestate under thermophilic conditions. Increasing the temperature from 35 to 55 °C also improved the methane production rate of the MGS (up to 9.4 times faster) and reduced the lag time (up to 1.9 times). Although the temperature increase mediated a decrease in the size of the sludge granules, no negative effects on the performance of the MGS was observed under thermophilic conditions. CONCLUSIONS: More methane is obtained from real agroindustrial effluents at thermophilic conditions than under mesophilic conditions. One-step temperature increase (instead of progressive sequential increases) can be used to implement the thermophilic anaerobic digestion processes with MGS.


Assuntos
Agroquímicos/metabolismo , Metano/metabolismo , Esgotos/química , Temperatura , Eliminação de Resíduos Líquidos/métodos , Agroquímicos/análise , Agroquímicos/isolamento & purificação , Anaerobiose , Biocombustíveis , Reatores Biológicos , Metano/análise
20.
Bioresour Technol ; 245(Pt A): 1294-1298, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28919475

RESUMO

This work assessed the feasibility of a hydrogenotrophic biogas process integrated with a membrane module in the external-loop design. The major scope was to conduct the investigation from the perspective of the membrane unit and reveal how the operating strategy influences the efficiency of biogas formation. It was observed that the fermenter worked with an improved efficacy, indicated by the higher concentration of methane in the headspace (80-90%) when the gas loading intensity, defined as the ratio of inlet gas permeation rate and the circulation rate of the liquid phase, was adjusted to lower values (3-5.3×10-3). Such results are implying that the mass transfer of H2 into the reactor is dependent on this critical parameter. Moreover, attention should be paid to the fouling of the module under longer-term experiments to keep its performance at a sufficient level.


Assuntos
Biocombustíveis , Metano , Anaerobiose , Reatores Biológicos , Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA