Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 8(16): 8931-8, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27074378

RESUMO

Conductance was measured in two different double stranded DNA (both with 20 bases), the more conducting poly(dG)-poly(dC) (ds-DNAc) and the less conducting poly(dA)-poly(dT) (ds-DNAi), by means of Electrochemical Capacitance Spectroscopy (ECS). The use of the ECS approach, exemplified herein with DNA nanowires, is equally a suitable and time-dependent advantageous alternative for conductance measurement of molecular systems, additionally allowing better understanding of the alignment existing between molecular scale conductance and electron transfer rate.


Assuntos
DNA/química , Espectroscopia Dielétrica/métodos , Nanofios/química , Capacitância Elétrica , Condutividade Elétrica , Transporte de Elétrons , Modelos Químicos , Nanotecnologia
2.
ACS Appl Mater Interfaces ; 3(2): 500-4, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21244018

RESUMO

Highly aligned CaCu(3)Ti(4)O(12) nanorod arrays were grown on Si/SiO(2)/Ti/Pt substrates by radio-frequency sputtering at a low deposition temperature of 300 °C and room temperature. Structural and morphological studies have shown that the nanostructures have a polycrystalline nature and are oriented perpendicular to the substrate. The high density of grain boundaries in the nanorods is responsible for the nonlinear current behavior observed in these arrays. The current-voltage (I-V) characteristics observed in nanorods were attributed to the resistive memory phenomenon. The electrical resistance of microcapacitors composed of CaCu(3)Ti(4)O(12) nanorods could be reversibly switched between two stable resistance states by varying the applied electric field. In order to explain this switching mechanism, a model based on the increase/decrease of electrical conduction controlled by grain boundary polarization has been proposed.

3.
Biosens Bioelectron ; 26(1): 36-42, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20605432

RESUMO

ArtinM is a D-mannose binding lectin that has been arousing increasing interest because of its biomedical properties, especially those involving the stimulation of Th1 immune response, which confers protection against intracellular pathogens. The potential pharmaceutical applications of ArtinM have motivated the production of its recombinant form (rArtinM) so that it is important to compare the sugar-binding properties of jArtinM and rArtinM in order to take better advantage of the potential applications of the recombinant lectin. In this work, a biosensor framework based on a Quartz Crystal Microbalance was established with the purpose of making a comparative study of the activity of native and recombinant ArtinM protein. The QCM transducer was strategically functionalized to use a simple model of protein binding kinetics. This approach allowed for the determination of the binding/dissociation kinetics rate and affinity equilibrium constant of both forms of ArtinM with horseradish peroxidase glycoprotein (HRP), a N-glycosylated protein that contains the trimannoside Manα1-3[Manα1-6]Man, which is a known ligand for jArtinM (Jeyaprakash et al., 2004). Monitoring of the real-time binding of rArtinM shows that it was able to bind HRP, leading to an analytical curve similar to that of jArtinM, with statistically equivalent kinetic rates and affinity equilibrium constants for both forms of ArtinM. The lower reactivity of rArtinM with HRP than jArtinM was considered to be due to a difference in the number of Carbohydrate Recognition Domains (CRDs) per molecule of each lectin form rather than to a difference in the energy of binding per CRD of each lectin form.


Assuntos
Técnicas Biossensoriais/instrumentação , Glicoproteínas/química , Peroxidase do Rábano Silvestre/química , Lectina de Ligação a Manose/química , Sistemas Microeletromecânicos/instrumentação , Mapeamento de Interação de Proteínas/instrumentação , Sistemas Computacionais , Desenho de Equipamento , Análise de Falha de Equipamento , Cinética
4.
J Mater Sci Mater Med ; 20(8): 1619-27, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19347256

RESUMO

The main goal of the present study was to evaluate the effect of different setting accelerator agents on the developed microstructures of calcium phosphate cements (CPCs) by employing the impedance spectroscopy (IS) technique. Six compositions of CPCs were prepared from mixtures of commercial dicalcium phosphate anhydrous (DCPA) and synthesized tetracalcium phosphate (TTCP) as the solid phases. Two TTCP/DCPA molar ratios (1/1 and 1/2) and three liquid phases (aqueous solutions of Na(2)HPO(4), tartaric acid (TA) and oxalic acid (OA), 5% volume fraction) were employed. Initial (I) and final (F) setting times of the cement pastes were determined with Gillmore needles (ASTM standard C266-99). The hardened samples were characterized by X-ray powder diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and apparent density measurements. The IS technique was employed as a non-destructive tool to obtain information related to porosity, tortuosity and homogeneity of the cement microstructures. The formulation prepared from a TTCP/DCPA equimolar mixture and OA as the liquid phase presented the shortest I and F (12 and 20 min, respectively) in comparison to the other studied systems. XRD analyses revealed the formation of low-crystallinity hydroxyapatite (HA) (as the main phase) as well as the presence of little amounts of unreacted DCPA and TTCP after 24 h hardening in 100% relative humidity. This was related to the proposed mechanisms of dissolution of the reactants. The bands observed by FTIR allowed identifying the presence of calcium tartrate and calcium oxalate in the samples prepared from TA and OA, in addition to the characteristic bands of HA. High degree of entanglement of the formed crystals was observed by SEM in samples containing OA. SEM images were also correlated to the apparent densities of the hardened cements. Changes in porosity, tortuosity and microstructural homogeneity were determined in all samples, from IS results, when the TTCP/DCPA ratio was changed from 1/1 to 1/2. The cement formulated from an equimolar mixture of TTCP/DCPA and OA as the liquid phase presented setting times, degree of conversion to low-crystallinity HA and microstructural features suitable to be used as potential bone cement in clinical applications. The IS technique was shown to be a very sensitive and non-destructive tool to relate the paste composition to the developed microstructures. This approach could be very useful to develop calcium phosphate bone cements for specific clinical demands.


Assuntos
Cimentos Ósseos/química , Fosfatos de Cálcio/química , Cimentação/métodos , Impedância Elétrica , Microscopia Eletrônica de Varredura/métodos , Modelos Biológicos , Transição de Fase , Difração de Pó , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Fatores de Tempo , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA