Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Ecology ; 100(11): e02863, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31398280

RESUMO

In 2014, a DNA-based phylogenetic study confirming the paraphyly of the grass subtribe Sporobolinae proposed the creation of a large monophyletic genus Sporobolus, including (among others) species previously included in the genera Spartina, Calamovilfa, and Sporobolus. Spartina species have contributed substantially (and continue contributing) to our knowledge in multiple disciplines, including ecology, evolutionary biology, molecular biology, biogeography, experimental ecology, biological invasions, environmental management, restoration ecology, history, economics, and sociology. There is no rationale so compelling to subsume the name Spartina as a subgenus that could rival the striking, global iconic history and use of the name Spartina for over 200 yr. We do not agree with the subjective arguments underlying the proposal to change Spartina to Sporobolus. We understand the importance of both the objective phylogenetic insights and of the subjective formalized nomenclature and hope that by opening this debate we will encourage positive feedback that will strengthen taxonomic decisions with an interdisciplinary perspective. We consider that the strongly distinct, monophyletic clade Spartina should simply and efficiently be treated as the genus Spartina.


Assuntos
Poaceae , Filogenia
2.
PeerJ ; 1: e109, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23904988

RESUMO

Ecological theory and experiments indicate that warming can increase the relative strength of top-down effects via alterations to metabolic rates in several different systems, thereby resulting in decreased plant biomass at higher temperatures. However, the general influence of increased environmental temperature on top-down effects is not well understood in systems where organisms experience relatively large variation in temperature. Rapid ocean temperature changes are pervasive throughout the Galápagos Islands due to upwelling and downwelling of internal waves, ENSO events and seasonality. We measured the effect of large, but not uncommon, water temperature variation on the metabolism and grazing rate of a common subtidal herbivore and on photosynthesis of their algal prey in the Galápagos Islands in July 2012. We found that green urchin consumption and metabolism were greater at the higher temperature treatment (28°C), resulting in significantly less algal biomass. Our result that warming increased green urchin metabolic rates, even in a highly dynamic system, provides further support for a mechanistic link between environmental temperature and feeding rates. And further, our findings suggest individual response to temperature results in changes in top-down effects. And if this response is maintained over longer-time scales of days to weeks, this could translate to alterations of larger-scale ecological patterns, such as primary producer community composition and structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA