Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(11): e0286502, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37910524

RESUMO

High temperatures and low water availability often strike organisms concomitantly. Observing how organisms behaviorally thermohydroregulate may help us to better understand their climatic vulnerability. This is especially important for tropical forest lizards, species that are purportedly under greater climatic risk. Here, we observed the influence of hydration level on the Voluntary Thermal Maximum (VTmax) in two small Amazonian lizard species: Loxopholis ferreirai (semiaquatic and scansorial) and Loxopholis percarinatum (leaf litter parthenogenetic dweller), accounting for several potential confounding factors (handling, body mass, starting temperature and heating rate). Next, we used two modeling approaches (simple mapping of thermal margins and NicheMapR) to compare the effects of dehydration, decrease in precipitation, ability to burrow, and tree cover availability, on geographic models of climatic vulnerability. We found that VTmax decreased with dehydration, starting temperature, and heating rates in both species. The two modeling approaches showed that dehydration may alter the expected intensity, extent, and duration of perceived thermal risk across the Amazon basin for these forest lizards. Based on our results and previous studies, we identify new evidence needed to better understand thermohydroregulation and to model the geography of climatic risk using the VTmax.


Assuntos
Lagartos , Animais , Lagartos/fisiologia , Desidratação , Regulação da Temperatura Corporal/fisiologia , Temperatura Corporal/fisiologia , Temperatura , Geografia
2.
Mitochondrial DNA B Resour ; 6(8): 2393-2395, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34345705

RESUMO

The mitogenome of the South American parthenogenetic lizard Loxopholis percarinatum Müller, 1923 (Squamata: Gymnophthalmidae), a uni-bisexual species complex, was recovered for three individuals from Rio Negro region, Amazonas, Brazil. The content and order of genes are typical for vertebrate mitochondrial genomes, and we recovered 13 protein-coding genes, 22 tRNA, and two rRNA (12S and 16S), in addition to partial fragments of the Control Region. A maximum likelihood phylogenetic analysis with mitogenomes of selected lizard families recovered L. percarinatum with Iphisa elegans Gray, 1851, the only other Gymnophthalmidae species available in GenBank.

3.
PLoS One ; 8(11): e79504, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24223956

RESUMO

Morphological similarity associated to restricted distributions and low dispersal abilities make the direct developing "Terrarana" frogs of the genus Euparkerella a good model for examining diversification processes. We here infer phylogenetic relationships within the genus Euparkerella, using DNA sequence data from one mitochondrial and four nuclear genes coupled with traditional Bayesian phylogenetic reconstruction approaches and more recent coalescent methods of species tree inference. We also used Bayesian clustering analysis and a recent Bayesian coalescent-based approach specifically to infer species delimitation. The analysis of 39 individuals from the four known Euparkerella species uncovered high levels of genetic diversity, especially within the two previously morphologically-defined E. cochranae and E. brasiliensis. Within these species, the gene trees at five independent loci and trees from combined data (concatenated dataset and the species tree) uncovered six deeply diverged and geographically coherent evolutionary units, which may have diverged between the Miocene and the Pleistocene. These six units were also uncovered in the Bayesian clustering analysis, and supported by the Bayesian coalescent-based species delimitation (BPP), and Genealogical Sorting Index (GSI), providing thus strong evidence for underestimation of the current levels of diversity within Euparkerella. The cryptic diversity now uncovered opens new opportunities to examine the origins and maintenance of microendemism in the context of spatial heterogeneity and/or human induced fragmentation of the highly threatened Brazilian Atlantic forest hotspot.


Assuntos
Anuros/genética , Evolução Molecular , Variação Genética , Árvores , Animais , Teorema de Bayes , Brasil , Análise por Conglomerados , DNA Mitocondrial/genética , Filogenia , Análise de Sequência de DNA
4.
Mol Phylogenet Evol ; 57(3): 1120-33, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20813192

RESUMO

The Neotropical Phyllomedusa burmeisteri treefrog group includes four diploid (P. bahiana, P. burmeisteri, P. distincta and P. iheringii) and one tetraploid (P. tetraploidea) forms. Here we use mitochondrial and nuclear sequence variation from across its range to verify if recognized morphospecies correspond to phylogenetic clades, examine the origin of the polyploid P. tetraploidea, and compare range wide patterns of diversification to those of other BAF organisms. We compared single gene trees with one Bayesian multi-gene tree, and one Bayesian species tree inferred under a coalescent framework. Our mtDNA phylogenetic analyses showed that P. bahiana, P. burmeisteri and P. iheringii correspond to monophyletic clades, while P. distincta and P. tetraploidea were paraphyletic. The nuclear gene trees were concordant in revealing two moderately supported groups including (i) P. bahiana and P. burmeisteri (northern species) and (ii) P. distincta, P.tetraploidea and P. iheringii (southern species). The multi-gene tree and the species tree retrieved similar topologies, giving high support to the northern and southern clades, and to the sister-taxa relationship between P. tetraploidea and P. distincta. Estimates of (t)MRCA suggest a major split within the P. burmeisteri group at ≈ 5 Myr (between northern and southern groups), while the main clades were originated between ≈ 0.4 and 2.5 Myr, spanning the late Pliocene and Pleistocene. Patterns of geographic and temporal diversification within the group were congruent with those uncovered for other co-distributed organisms. Independent paleoecological and geological data suggest that vicariance associated with climatic oscillations and neotectonic activity may have driven lineage divergence within the P. burmeisteri group. P. tetraploidea probably originated from polyploidization of P. distincta or from a common ancestor.


Assuntos
Anuros/genética , Evolução Molecular , Filogenia , Animais , Anuros/classificação , Teorema de Bayes , Núcleo Celular/genética , DNA Mitocondrial/genética , Geografia , Funções Verossimilhança , Filogeografia , Alinhamento de Sequência , Análise de Sequência de DNA , Tetraploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA