Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 5515, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33168823

RESUMO

The carbon sink capacity of tropical forests is substantially affected by tree mortality. However, the main drivers of tropical tree death remain largely unknown. Here we present a pan-Amazonian assessment of how and why trees die, analysing over 120,000 trees representing > 3800 species from 189 long-term RAINFOR forest plots. While tree mortality rates vary greatly Amazon-wide, on average trees are as likely to die standing as they are broken or uprooted-modes of death with different ecological consequences. Species-level growth rate is the single most important predictor of tree death in Amazonia, with faster-growing species being at higher risk. Within species, however, the slowest-growing trees are at greatest risk while the effect of tree size varies across the basin. In the driest Amazonian region species-level bioclimatic distributional patterns also predict the risk of death, suggesting that these forests are experiencing climatic conditions beyond their adaptative limits. These results provide not only a holistic pan-Amazonian picture of tree death but large-scale evidence for the overarching importance of the growth-survival trade-off in driving tropical tree mortality.


Assuntos
Ecologia , Florestas , Árvores/crescimento & desenvolvimento , Biomassa , Brasil , Dióxido de Carbono , Sequestro de Carbono , Ecossistema , Monitoramento Ambiental , Modelos Biológicos , Modelos de Riscos Proporcionais , Fatores de Risco , Clima Tropical
2.
Proc Natl Acad Sci U S A ; 115(46): 11671-11679, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30397144

RESUMO

Large uncertainties still dominate the hypothesis of an abrupt large-scale shift of the Amazon forest caused by climate change [Amazonian forest dieback (AFD)] even though observational evidence shows the forest and regional climate changing. Here, we assess whether mitigation or adaptation action should be taken now, later, or not at all in light of such uncertainties. No action/later action would result in major social impacts that may influence migration to large Amazonian cities through a causal chain of climate change and forest degradation leading to lower river-water levels that affect transportation, food security, and health. Net-present value socioeconomic damage over a 30-year period after AFD is estimated between US dollar (USD) $957 billion (×109) and $3,589 billion (compared with Gross Brazilian Amazon Product of USD $150 billion per year), arising primarily from changes in the provision of ecosystem services. Costs of acting now would be one to two orders of magnitude lower than economic damages. However, while AFD mitigation alternatives-e.g., curbing deforestation-are attainable (USD $64 billion), their efficacy in achieving a forest resilience that prevents AFD is uncertain. Concurrently, a proposed set of 20 adaptation measures is also attainable (USD $122 billion) and could bring benefits even if AFD never occurs. An interdisciplinary research agenda to fill lingering knowledge gaps and constrain the risk of AFD should focus on developing sound experimental and modeling evidence regarding its likelihood, integrated with socioeconomic assessments to anticipate its impacts and evaluate the feasibility and efficacy of mitigation/adaptation options.


Assuntos
Conservação dos Recursos Naturais/economia , Agricultura Florestal/economia , Agricultura Florestal/métodos , Brasil , Mudança Climática , Simulação por Computador , Ecossistema , Florestas , Políticas , Medição de Risco/métodos , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA