Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 27(25): 30945-30956, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31808098

RESUMO

Carbon nanomaterials (CNM), such as graphene oxide (GO), have been the focus of study in several areas of science mostly due to their physical-chemical properties. However, data concerning the potential toxic effects of these CNM in bivalves are still scarce. When present in the aquatic systems, the combination with other contaminants, as well as pH environmental variations, can influence the behavior of these nanomaterials and, consequently, their toxicity. Thus, the main goal of this study was to evaluate the effect of exposure of clam Ruditapes philippinarum to GO when acting alone and in the combination with copper (Cu), under two pH levels (control 7.8 and 7.3). A 28-day exposure was performed and metabolism and oxidative stress-related parameters were evaluated. The effects caused by GO and Cu exposures, either isolated or co-exposed, showed a direct and dependent relationship with the pH in which the organisms were exposed. In clams maintained at control pH (7.8), Cu and GO + Cu treatments showed lower lipid peroxidation (LPO) and lower electron transport system (ETS) activity, respectively. In clams maintained at low pH, glutathione-S-transferases (GSTs) activities were increased in Cu and Cu + GO treatments, whereas reduced glutathione (GSH) levels were increased in Cu treatment and ETS activity was higher in GO + Cu. Thus, it can be observed that clams responses to Cu and GO were strongly modulated by pH in terms of their defense system and energy production, although this does not result into higher LPO levels.


Assuntos
Bivalves , Poluentes Químicos da Água/análise , Animais , Cobre , Grafite , Concentração de Íons de Hidrogênio
2.
Biomed Res Int ; 2013: 623789, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23865059

RESUMO

Even though technologies involving nano/microparticles have great potential, it is crucial to determine possible toxicity of these technological products before extensive use. Fullerenes C60 are nanomaterials with unique physicochemical and biological properties that are important for the development of many technological applications. The aim of this study was to evaluate the consequences of nonphotoexcited fullerene C60 exposure in brain acetylcholinesterase expression and activity, antioxidant responses, and oxidative damage using adult zebrafish as an animal model. None of the doses tested (7.5, 15, and 30 mg/kg) altered AChE activity, antioxidant responses, and oxidative damage when zebrafish were exposed to nonphotoexcited C60 nano/microparticles during 6 and 12 hours. However, adult zebrafish exposed to the 30 mg/kg dose for 24 hours have shown enhanced AChE activity and augmented lipid peroxidation (TBARS assays) in brain. In addition, the up-regulation of brain AChE activity was neither related to the transcriptional control (RT-qPCR analysis) nor to the direct action of nonphotoexcited C60 nano/microparticles on the protein (in vitro results) but probably involved a posttranscriptional or posttranslational modulation of this enzymatic activity. Taken together these findings provided further evidence of toxic effects on brain after C60 exposure.


Assuntos
Acetilcolinesterase/metabolismo , Encéfalo/enzimologia , Fulerenos/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Nanopartículas/química , Peritônio/metabolismo , Peixe-Zebra/metabolismo , Envelhecimento/metabolismo , Animais , Antioxidantes/metabolismo , Encéfalo/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Tamanho da Partícula , Peritônio/efeitos dos fármacos , Suspensões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA