Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 3235, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34050175

RESUMO

Anaerobic oxidation of ammonium (anammox) in oxygen minimum zones (OMZs) is a major pathway of oceanic nitrogen loss. Ammonium released from sinking particles has been suggested to fuel this process. During cruises to the Peruvian OMZ in April-June 2017 we found that anammox rates are strongly correlated with the volume of small particles (128-512 µm), even though anammox bacteria were not directly associated with particles. This suggests that the relationship between anammox rates and particles is related to the ammonium released from particles by remineralization. To investigate this, ammonium release from particles was modelled and theoretical encounters of free-living anammox bacteria with ammonium in the particle boundary layer were calculated. These results indicated that small sinking particles could be responsible for ~75% of ammonium release in anoxic waters and that free-living anammox bacteria frequently encounter ammonium in the vicinity of smaller particles. This indicates a so far underestimated role of abundant, slow-sinking small particles in controlling oceanic nutrient budgets, and furthermore implies that observations of the volume of small particles could be used to estimate N-loss across large areas.


Assuntos
Compostos de Amônio/metabolismo , Bactérias/metabolismo , Ciclo do Nitrogênio , Nitrogênio/metabolismo , Anaerobiose , Oceanos e Mares , Oxirredução , Peru , Água do Mar/química , Água do Mar/microbiologia
2.
FEMS Microbiol Ecol ; 94(6)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29668898

RESUMO

High-altitude wetland holds freshwater springs, evaporitic ponds and lagoon with variable salinity and nutrients, potentially influencing the ecology of nitrifying communities. In this study, nitrifying microorganisms in Salar de Huasco (Chile) were surveyed to determine bacterial and archaeal contribution to ammonium (AO), nitrite oxidation (NO), ammonium uptake (AU) during wet and dry seasons. The activity signals from these groups were assessed by specific amoA-qPCR transcription, 15N tracer studies and addition of group specific inhibitor experiments for nitrifying microorganisms (N1-guanyl-1, 7-diaminoheptane [GC7]-archaeal specific and allylthiourea [ATU]-bacterial specific). Nitrifying communities, i.e. Nitrosopumilus, Nitrosospira, Nitrosomonas, Kuenenia and Nitrospira, were more frequent (∼0.25% of 16S rRNA sequences) at low salinity sites. Bacterial amoA-qPCR transcripts also increased at low salinity and along in situ ammonium increase observed between wet/dry seasons. Nutrient changes through time and 15N tracer experiments results showed that AO and NO were detected and peaked mainly at low salinity-high ammonium sites (<37 000 µS cm-1 and >0.3 µM), whereas AU was predominant at evaporitic sites. Our results indicate that salinity and ammonium affect the nitrifying communities that are potentially more active at low-salinity sites but persistent at saltier evaporitic areas of the wetland when ammonium is available.


Assuntos
Compostos de Amônio/metabolismo , Archaea/metabolismo , Bactérias/metabolismo , Nitrificação/fisiologia , Nitritos/metabolismo , Altitude , Amônia/metabolismo , Archaea/genética , Bactérias/genética , Chile , Água Doce/microbiologia , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Salinidade , Áreas Alagadas
3.
PLoS One ; 12(1): e0170059, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28122044

RESUMO

The eastern tropical South Pacific (ETSP) upwelling region is one of the ocean's largest sinks of fixed nitrogen, which is lost as N2 via the anaerobic processes of anammox and denitrification. One-third of nitrogen loss occurs in productive shelf waters stimulated by organic matter export as a result of eastern boundary upwelling. Offshore, nitrogen loss rates are lower, but due to its sheer size this area accounts for ~70% of ETSP nitrogen loss. How nitrogen loss and primary production are regulated in the offshore ETSP region where coastal upwelling is less influential remains unclear. Mesoscale eddies, ubiquitous in the ETSP region, have been suggested to enhance vertical nutrient transport and thereby regulate primary productivity and hence organic matter export. Here, we investigated the impact of mesoscale eddies on anammox and denitrification activity using 15N-labelled in situ incubation experiments. Anammox was shown to be the dominant nitrogen loss process, but varied across the eddy, whereas denitrification was below detection at all stations. Anammox rates at the eddy periphery were greater than at the center. Similarly, depth-integrated chlorophyll paralleled anammox activity, increasing at the periphery relative to the eddy center; suggestive of enhanced organic matter export along the periphery supporting nitrogen loss. This can be attributed to enhanced vertical nutrient transport caused by an eddy-driven submesoscale mechanism operating at the eddy periphery. In the ETSP region, the widespread distribution of eddies and the large heterogeneity observed in anammox rates from a compilation of stations suggests that eddy-driven vertical nutrient transport may regulate offshore primary production and thereby nitrogen loss.


Assuntos
Nitrogênio/análise , Água do Mar/análise , Movimentos da Água , Organismos Aquáticos , Clorofila/química , Hidrodinâmica , Compostos Orgânicos/química , Oceano Pacífico , Peru
4.
ISME J ; 10(8): 2067-71, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26918666

RESUMO

Bacteria of the NC10 phylum link anaerobic methane oxidation to nitrite denitrification through a unique O2-producing intra-aerobic methanotrophy pathway. A niche for NC10 in the pelagic ocean has not been confirmed. We show that NC10 bacteria are present and transcriptionally active in oceanic oxygen minimum zones (OMZs) off northern Mexico and Costa Rica. NC10 16S rRNA genes were detected at all sites, peaking in abundance in the anoxic zone with elevated nitrite and methane concentrations. Phylogenetic analysis of particulate methane monooxygenase genes further confirmed the presence of NC10. rRNA and mRNA transcripts assignable to NC10 peaked within the OMZ and included genes of the putative nitrite-dependent intra-aerobic pathway, with high representation of transcripts containing the unique motif structure of the nitric oxide (NO) reductase of NC10 bacteria, hypothesized to participate in O2-producing NO dismutation. These findings confirm pelagic OMZs as a niche for NC10, suggesting a role for this group in OMZ nitrogen, methane and oxygen cycling.


Assuntos
Bactérias/classificação , Oxigênio/metabolismo , Bactérias/enzimologia , Bactérias/genética , Proteínas de Bactérias/genética , Costa Rica , Desnitrificação , Metano/análise , Metano/metabolismo , México , Nitritos/análise , Nitritos/metabolismo , Nitrogênio/metabolismo , Oceanos e Mares , Oxirredução , Oxirredutases/genética , Oxigenases/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA