Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 34(10): 1312-8, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26854905

RESUMO

A recombinant strain of Lactococcus lactis displaying a cell-surface anchored fibronectin binding protein A (FnBPA) from Staphylococcus aureus (LL-FnBPA) had been shown to be more efficient in delivering plasmid than its wild-type counterpart both in vitro and in vivo, and have the ability to orientate the immune response toward a Th2 profile in a context of a DNA vaccination. The aim of this work was to test whether this LL-FnBPA strain could shape the immune response after mucosal administration in mice. For this, we used a mouse model of human papilloma virus (HPV)-induced cancer and a L. lactis strain displaying at its cell surface both HPV-16-E7 antigen (LL-E7) and FnBPA (LL-E7+FnBPA). Our results revealed a more efficient systemic Th1 immune response with recombinant LL-E7+FnBPA. Furthermore, mice vaccinated with LL-E7+FnBPA were better protected when challenged with HPV-16-induced tumors. Altogether, the results suggest that FnBPA displays adjuvant properties when used in the context of mucosal delivery using L. lactis as a live vector.


Assuntos
Adesinas Bacterianas/imunologia , Vacinas Anticâncer/imunologia , Lactococcus lactis , Proteínas E7 de Papillomavirus/imunologia , Infecções por Papillomavirus/prevenção & controle , Animais , Células CACO-2 , Linhagem Celular Tumoral , Técnicas de Visualização da Superfície Celular , Feminino , Papillomavirus Humano 16 , Humanos , Imunidade Celular , Imunidade Humoral , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Plasmídeos , Staphylococcus aureus , Linfócitos T Citotóxicos/imunologia , Células Th1/imunologia
2.
PLoS One ; 7(4): e35422, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22523594

RESUMO

Tissue engineering is based on the association of cultured cells with structural matrices and the incorporation of signaling molecules for inducing tissue regeneration. Despite its enormous potential, tissue engineering faces a major challenge concerning the maintenance of cell viability after the implantation of the constructs. The lack of a functional vasculature within the implant compromises the delivery of nutrients to and removal of metabolites from the cells, which can lead to implant failure. In this sense, our investigation aims to develop a new strategy for enhancing vascularization in tissue engineering constructs. This study's aim was to establish a culture of human adipose tissue-derived stem cells (hASCs) to evaluate the biocompatibility of electrospun fiber mesh made of polyhydroxybutyrate (PHB) and its copolymer poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHB-HV) and to promote the differentiation of hASCs into the endothelial lineage. Fiber mesh was produced by blending 30% PHB with 70% PHB-HV and its physical characterization was conducted using scanning electron microscopy analysis (SEM). Using electrospinning, fiber mesh was obtained with diameters ranging 300 nm to 1.3 µm. To assess the biological performance, hASCs were extracted, cultured, characterized by flow cytometry, expanded and seeded onto electrospun PHB/PHB-HV fiber mesh. Various aspects of the cells were analyzed in vitro using SEM, MTT assay and Calcein-AM staining. The in vitro evaluation demonstrated good adhesion and a normal morphology of the hASCs. After 7, 14 and 21 days of seeding hASCs onto electrospun PHB/PHB-HV fiber mesh, the cells remained viable and proliferative. Moreover, when cultured with endothelial differentiation medium (i.e., medium containing VEGF and bFGF), the hASCs expressed endothelial markers such as VE-Cadherin and the vWF factor. Therefore, the electrospun PHB/PHB-HV fiber mesh appears to be a suitable material that can be used in combination with endothelial-differentiated cells to improve vascularization in engineered bone tissues.


Assuntos
Tecido Adiposo/citologia , Osso e Ossos/irrigação sanguínea , Células Endoteliais/fisiologia , Células-Tronco Mesenquimais/citologia , Engenharia Tecidual/métodos , Antígenos CD/biossíntese , Caderinas/biossíntese , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Matriz Extracelular/fisiologia , Humanos , Hidroxibutiratos , Células-Tronco Mesenquimais/metabolismo , Microscopia Eletrônica de Varredura , Poliésteres , Proibitinas , Alicerces Teciduais , Fator de von Willebrand/biossíntese
3.
Cells Tissues Organs ; 191(2): 119-28, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19641289

RESUMO

Cartilage tissue has a poor capacity for self-repair, especially in the case of severe cartilage damage due to trauma or age-related degeneration. Cell-based tissue engineering using scaffolds has provided an option for the repair of cartilage tissue. The present work demonstrates that a three-dimensional (3D) chitosan scaffold increases the efficiency of the adhesion and differentiation of mesenchymal stem cells (MSCs) after the addition of a chondrogenic medium. These culture conditions promoted MSC differentiation into chondrocytes during the first 9 weeks of monolayer or 3D culture in a scaffold composed of chitosan or chitosan/gelatin. The results demonstrated that a chitosan scaffold caused a reduction in alkaline phosphatase production and an increase in the collagen concentration indicating phenotypic changes in the cells. In support of these results, the production of collagen type II by the MSCs cultured in the chitosan scaffold increased after 3 weeks of culture, indicating the beginning of differentiation. However, the addition of gelatin to the chitosan scaffold did not improve on the results obtained with chitosan alone. These results suggest that this 3D chitosan scaffold is a promising candidate for biomaterial implants designed to promote MSC colonization and has applications in regenerative medicine.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Quitosana/farmacologia , Condrócitos/citologia , Células-Tronco Mesenquimais/citologia , Engenharia Tecidual/métodos , Fosfatase Alcalina/metabolismo , Animais , Cartilagem/fisiologia , Células Cultivadas , Condrócitos/metabolismo , Colágeno/biossíntese , Gelatina/farmacologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA