Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Tipo de estudo
Intervalo de ano de publicação
1.
Braz J Med Biol Res ; 54(11): e11352, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34495249

RESUMO

Diabetes mellitus is associated with neural and micro- and macrovascular complications. Therapeutic options for these complications are limited and the delivery of mesenchymal stem cells into lesions have been reported to improve the healing process. In this work, the effects of the administration of a lineage of human bone marrow mesenchymal stem cells immortalized by the expression of telomerase (hBMSC-TERT) as a potential therapeutic tool for wound healing in diabetic rats were investigated. This is the first description of the use of these cells in diabetic wounds. Dorsal cutaneous lesions were made in streptozotocin-induced diabetic rats and hBMSC-TERT were subcutaneously administered around the lesions. The healing process was evaluated macroscopically, histologically, and by birefringence analysis. Diabetic wounded rats infused with hBMSC-TERT (DM-TERT group) and the non-diabetic wounded rats not infused with hBMSC-TERT (CW group) had very similar patterns of fibroblastic response and collagen proliferation indicating improvement of wound healing. The result obtained by birefringence analysis was in accordance with that obtained by the histological analysis. The results indicated that local administration of hBMSC-TERT in diabetic wounds improved the wound healing process and may become a therapeutic option for wounds in individuals with diabetes.


Assuntos
Diabetes Mellitus Experimental , Células-Tronco Mesenquimais , Telomerase , Animais , Humanos , Ratos , Estreptozocina , Cicatrização
2.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;54(11): e11352, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1339450

RESUMO

Diabetes mellitus is associated with neural and micro- and macrovascular complications. Therapeutic options for these complications are limited and the delivery of mesenchymal stem cells into lesions have been reported to improve the healing process. In this work, the effects of the administration of a lineage of human bone marrow mesenchymal stem cells immortalized by the expression of telomerase (hBMSC-TERT) as a potential therapeutic tool for wound healing in diabetic rats were investigated. This is the first description of the use of these cells in diabetic wounds. Dorsal cutaneous lesions were made in streptozotocin-induced diabetic rats and hBMSC-TERT were subcutaneously administered around the lesions. The healing process was evaluated macroscopically, histologically, and by birefringence analysis. Diabetic wounded rats infused with hBMSC-TERT (DM-TERT group) and the non-diabetic wounded rats not infused with hBMSC-TERT (CW group) had very similar patterns of fibroblastic response and collagen proliferation indicating improvement of wound healing. The result obtained by birefringence analysis was in accordance with that obtained by the histological analysis. The results indicated that local administration of hBMSC-TERT in diabetic wounds improved the wound healing process and may become a therapeutic option for wounds in individuals with diabetes.


Assuntos
Humanos , Animais , Ratos , Telomerase , Diabetes Mellitus Experimental , Células-Tronco Mesenquimais , Cicatrização , Estreptozocina
3.
Lasers Med Sci ; 33(9): 1867-1874, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29790013

RESUMO

Wound healing is a complex biological process with specific phases. Photobiomodulation (PBM) decreases the inflammatory infiltrate, stimulating fibroblast proliferation and angiogenesis, and therefore, is indicated for wound healing. Vitamin A is used to reverse the inhibitory effects on wound healing and accelerate the healthy granulation tissue. The study aimed to evaluate the effect of topical vitamin A and PBM (GaAlAs) in inflammatory phase of cutaneous wounds. Forty Wistar male rats were separated into four groups: (1) control (CG); (2) laser group (LG) GaAlAs, 670 nm, 30 mW, energy per point of 0.9 J, radiating by 1 point in 30 s; (3) vitamin A group (VitAG); and (4) laser group plus vitamin A (LG + VitAG). Wounds were surgically made by a punch biopsy with 10 mm of diameter on the back of the animals and all treatments were started according to the experiment. The treatments were administered for four consecutive days and biopsy was performed on day 4. We performed both H&E and immunohistochemistry analysis. The results were compared between groups by one-way analysis of variance ANOVA test with post hoc Tukey (p < 0.05). Inflammatory infiltrate increased significantly in LG compared to CG and VitAG (p < 0.05). Regarding angiogenesis, VEGF expression was increased significantly in LG and LG + VitAG groups, p < 0.01. The results indicate that proposed treatments were effective on the healing process improved by LG and LG + VitAG. We show that laser plus vitamin A enhances healing by reducing the wound area and may have potential application for clinical management of cutaneous wounds.


Assuntos
Inflamação/patologia , Terapia com Luz de Baixa Intensidade , Vitamina A/farmacologia , Cicatrização/efeitos dos fármacos , Cicatrização/efeitos da radiação , Animais , Biópsia , Ciclo-Oxigenase 2/metabolismo , Imuno-Histoquímica , Lasers Semicondutores , Masculino , Ratos Wistar , Pele/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA