Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmacol Rep ; 73(2): 551-562, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33476036

RESUMO

BACKGROUND: Omeprazole (OME), a most frequently used proton pump inhibitor in gastric acidosis, is evident to show many adverse effects, including genetic instability. This study evaluated toxicogenic effects of OME in Mus musculus. METHODS: For this study, 40 male Swiss mice were divided into 8 groups (n = 5) and treated with OME at doses of 10, 20, and 40 mg/kg and/or treated with the antioxidants retinol palmitate (100 IU/kg) and ascorbic acid (2.0 µM/kg). Cyclophosphamide 50 mg/kg, (cytotoxic agent) and the vehicle were served as positive and negative control group, respectively. After 14 days of treatment, the stomach cells along with the bone marrow and peripheral blood lymphocytes were collected and submitted to the comet assay (alkaline version) and micronucleus test. Additionally, hematological and biochemical parameters of the animals were also determined inspect of vehicle group. RESULTS: The results suggest that OME at all doses induced genotoxicity and mutagenicity in the treated cells. However, in association with the antioxidants, these effects were modulated and/or inhibited along with a DNA repair capacity. CONCLUSIONS: Taken together, antioxidants (such as retinol palmitate and ascorbic acid) may be one of the best options to counteract OME-induced cytogenetic instability.


Assuntos
Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Diterpenos/farmacologia , Omeprazol/toxicidade , Ésteres de Retinil/farmacologia , Animais , Antineoplásicos/farmacologia , Ensaio Cometa , Ciclofosfamida/toxicidade , Reparo do DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Masculino , Camundongos , Mutagênese/efeitos dos fármacos , Omeprazol/administração & dosagem , Inibidores da Bomba de Prótons/administração & dosagem , Inibidores da Bomba de Prótons/toxicidade
3.
Chemosphere ; 204: 220-226, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29656158

RESUMO

Omeprazole (OME) is a proton pump inhibitor used for the treatment of various gastric and intestinal disease; however, studies on its effects on the genetic materials are still restricted. The present study aimed to evaluate possible toxicogenic effects of OME in Allium cepa meristems with the application of cytogenetic biomarkers for DNA damage, mutagenic, toxic and cytotoxic effects. Additionally, retinol palmitate (RP) and ascorbic acid (AA) were also co-treated with OME to evaluate possible modulatory effects of OME-induced cytogenetic damages. OME was tested at 10, 20 and 40 µg/mL, while RP and AA at 55 µg/mL and 352.2 µg/mL, respectively. Copper sulphate (0.6 µg/mL) and dechlorinated water were used as positive control and negative control, respectively. The results suggest that OME induced genotoxicity and mutagenicity in A. cepa at all tested concentrations. It was noted that cotreatment of OME with the antioxidant vitamins RP and/or AA significantly (p < 0.05) inhibited and/or modulated all toxicogenic damages induced by OME. These observations demonstrate their antigenotoxic, antimutagenic, antitoxic and anticitotoxic effects in A. cepa. This study indicates that application of antioxidants may be useful tools to overcome OME-induced toxic effects.


Assuntos
Allium/efeitos dos fármacos , Ácido Ascórbico/farmacologia , Omeprazol/toxicidade , Toxicogenética/métodos , Vitamina A/análogos & derivados , Antioxidantes/farmacologia , Dano ao DNA/efeitos dos fármacos , Diterpenos , Mutagênese/efeitos dos fármacos , Mutagênicos , Extratos Vegetais/farmacologia , Ésteres de Retinil , Vitamina A/farmacologia
4.
Exp Toxicol Pathol ; 69(5): 293-297, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28216169

RESUMO

Cancer, the multifactorial pathology and to date is the most lethal causes of death in the world. Cyclophosphamide (CPA) and doxorubicin (DOX) are the individually or combindly used two anticancer drugs. The antineoplastic drugs-mediated genetic instability can be overcome by using antioxidants. The study evaluated the cytogenotoxic modulatory potentials of retinyl palmitate (RP) caused by CPA and DOX in Swiss mice. For this, adult Mus musculus of either sex were divided equally regarding to the gender. Toxicogenetic effects were induced by the intraperitoneal (i.p.) administration of the CPA (20mg/kg) and/or DOX (2mg/kg), following to test for comet assay and micronucleus test in bone marrow cells after 48h (DOX) and 7h (CPA) of the administration of RP (100 IU/kg). Both CPA and DOX significantly (p<0.05) increased with the index and frequency of damages, clastogenic and/or aneugenic effects with the augmenting of micronuclei, demonstrating the cytotoxicity interference on the ratio of normochromatic to polychromatic erythrocytes and bone marrow cells of mice, that were found to reduce in RP treatment groups. In conclusion, RP has a modulatory effect on CPA and DOX-mediated cytogenotoxic events. The findings may be a good indication to manage the antioneoplastic drug-induced stress mediated detrimental effects by using RP, especially as a side effect minimizer.


Assuntos
Antineoplásicos/toxicidade , Antioxidantes/farmacologia , Ciclofosfamida/toxicidade , Dano ao DNA/efeitos dos fármacos , Doxorrubicina/toxicidade , Vitamina A/análogos & derivados , Animais , Diterpenos , Feminino , Masculino , Camundongos , Ésteres de Retinil , Vitamina A/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA