Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Sci (Lond) ; 110(5): 563-73, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16417467

RESUMO

Novel therapies for the treatment of MOF (multiple organ failure) are required. In the present study, we examined the effect of synthetic GHRP-6 (growth hormone-releasing peptide-6) on cell migration and proliferation using rat intestinal epithelial (IEC-6) and human colonic cancer (HT29) cells as in vitro models of injury. In addition, we examined its efficacy when given alone and in combination with the potent protective factor EGF (epidermal growth factor) in an in vivo model of MOF (using two hepatic vessel ischaemia/reperfusion protocols; 45 min of ischaemia and 45 min of reperfusion or 90 min of ischaemia and 120 min of reperfusion). In vitro studies showed that GHRP-6 directly influenced gut epithelial function as its addition caused a 3-fold increase in the rate of cell migration of IEC-6 and HT29 cells (P<0.01), but did not increase proliferation ([3H]thymidine incorporation). In vivo studies showed that, compared with baseline values, ischaemia/reperfusion caused marked hepatic and intestinal damage (histological scoring), neutrophilic infiltration (myeloperoxidase assay; 5-fold increase) and lipid peroxidation (malondialdehyde assay; 4-fold increase). Pre-treatment with GHRP-6 (120 microg/kg of body weight, intraperitoneally) alone truncated these effects by 50-85% (all P<0.05) and an additional benefit was seen when GHRP-6 was used in combination with EGF (1 mg/kg of body weight, intraperitoneally). Lung and renal injuries were also reduced by these pre-treatments. In conclusion, administration of GHRP-6, given alone or in combination with EGF to enhance its effects, may provide a novel simple approach for the prevention and treatment of MOF and other injuries of the gastrointestinal tract. In view of these findings, further studies appear justified.


Assuntos
Hormônio Liberador de Hormônio do Crescimento/uso terapêutico , Insuficiência de Múltiplos Órgãos/prevenção & controle , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Fator de Crescimento Epidérmico/farmacologia , Hormônio Liberador de Hormônio do Crescimento/farmacologia , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Insuficiência de Múltiplos Órgãos/metabolismo , Insuficiência de Múltiplos Órgãos/patologia , Infiltração de Neutrófilos/efeitos dos fármacos , Oligopeptídeos , Ratos , Ratos Wistar , Proteínas Recombinantes/farmacologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/prevenção & controle , Células Tumorais Cultivadas
2.
Am J Pathol ; 161(2): 373-9, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12163361

RESUMO

Ischemia/reperfusion of mesenteric vessels is a useful model for acute vascular insufficiency and the early stages of multiorgan failure, conditions associated with high morbidity and mortality. Epidermal growth factor (EGF) is a potent mitogen that shows potential for use in intestinal injury. We therefore examined its influence on this model. Male Sprague-Dawley rats received human recombinant EGF (2 mg/kg i.p., n = 14) or saline (n = 16); 25 minutes before arterial clamping of the superior mesenteric artery (ischemic period) for 60 minutes followed by a final 60-minute reperfusion period. Additional rats were not operated on (controls, n = 7) or had sham operation (laparotomy only, n = 10). Ischemia/reperfusion caused macroscopic damage affecting 56%, 51 to 67% (median, interquartile range), of small intestinal length and intraluminal bleeding. Malondialdehyde levels (free radical marker) increased eightfold compared to nonoperated animals (2400, 2200 to 2700 micro mol/mg protein versus 290, 250 to 350 micro mol/mg protein, P < 0.01) and myeloperoxidase levels (marker for inflammatory infiltrate) increased 15-fold (3150, 2670 to 4180 U/g tissue versus 240, 190 to 250 U/g tissue, P < 0.01). Pretreatment with EGF reduced macroscopic injury to 11%, 0 to 15%; prevented intraluminal bleeding; and reduced malondialdehyde and myeloperoxidase levels by approximately 60% and 90% (all P < 0.01 versus non-EGF-treated). Mesenteric ischemia/reperfusion also damaged the lungs and kidneys and increased serum tumor necrosis factor-alpha levels (circulating cytokine activity marker). EGF pretreatment also reduced these changes. These studies provide preliminary evidence that EGF is a novel therapy for the early treatment or prevention of intestinal damage and multiorgan failure resulting from mesenteric hypoperfusion.


Assuntos
Fator de Crescimento Epidérmico/administração & dosagem , Intestinos/irrigação sanguínea , Traumatismo por Reperfusão/prevenção & controle , Animais , Humanos , Injeções Intraperitoneais , Intestinos/efeitos dos fármacos , Intestinos/patologia , Masculino , Artérias Mesentéricas/patologia , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/administração & dosagem , Traumatismo por Reperfusão/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA