Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chempluschem ; 89(8): e202400183, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38648466

RESUMO

The chemical reduction within a family of organic selenocyanates, as masked selenols, using reducing agents, such as Rongalite, sodium dithionite, and sodium thiosulfate is investigated. Using Rongalite, the corresponding diselenides were obtained quantitatively and selectively in very good to excellent yields (51-100 %) starting from alkyl, aryl, and benzyl selenocyanates. The scope of the reaction is unaffected by the electronic nature of the substituents. Furthermore, the reducing agent, Rongalite, is compatible with hydrolysable and reducing-sensitive functional groups. Additionally, a simple methodology employing the in-situ generated benzyl selenolate anion (PhCH2Se-) to promote aliphatic nucleophilic substitution, epoxide ring opening, and Michael addition reactions has been developed; thus, extending the structural diversity of the synthesized selenium derivatives.

2.
Org Lett ; 22(2): 610-614, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31887062

RESUMO

Benzothiazoles are synthesized from thiobenzanilides using riboflavin as a photosensitizer and potassium peroxydisulfate as a sacrificial oxidizing agent under visible light irradiation. The methodology accepts a broad range of functional groups and affords the 2-substituted benzothiazoles by transition-metal-free organic photoredox catalysis under very mild conditions.


Assuntos
Anilidas/química , Benzotiazóis/síntese química , Riboflavina/química , Benzotiazóis/química , Catálise , Ciclização , Estrutura Molecular , Oxirredução , Processos Fotoquímicos
3.
J Phys Chem A ; 123(24): 5035-5042, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31117590

RESUMO

The reactivity of sulfur- and selenium-centered nucleophiles toward 1-naphthyl radicals was studied in dimethylsulfoxide. The photostimulated reaction of sulfide anions, -SC(NH)C6H5 (1), -SC(NH)NH2 (2), and -SC(NH)CH3 (3), renders, after the addition of MeI, methyl 1-naphthylsulfide as a main product together with bis(1-naphthyl) sulfide and naphthalene under irradiation. Concordantly, the reaction of selenide anions, -SeC(NH)C6H5 (4), -SeC(NH)NH2 (5), and -SeCN (6), produces methyl 1-naphthyl selenide, bis(1-naphthyl) selenide, and naphthalene in the presence of potassium tert-butoxide anion (entrainment conditions). Absolute rate constants for the coupling of ions 1-6 to 1-naphthyl radicals were determined; as a general trend, the selenide-centered nucleophiles enhance in 2 times the reactivity of their sulfide analogues. From the mechanistic study, it is proposed that the unstable radical anion produced by the addition of the nucleophile to 1-naphthyl radical affords, after fragmentation, 1-naphthylsulfide/selenide anion. In addition, experimental results are discussed in terms of density functional theory calculations. There is a generally good agreement between the experimental and the calculated reactivities, the spin density being the main parameter to describe the difference found among the anions under study. Moreover, the calculations predict that anion -SeC(NH)CH3 (7) would be a good candidate for the synthesis of selenide derivatives.

4.
J Org Chem ; 83(10): 5674-5680, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29683656

RESUMO

The photochemical one-electron oxidation of alkyl aryl selenides was studied by means of laser flash photolysis (355 nm). Quenching of the sensitizers in their excited state leads to selenide radical cation in the presence of selenium derivatives. The π-type dimer of methyl phenyl selenide radical cation was detected at 630 nm at expenses of the monomeric radical cation (530 nm). The effect of modification of the aryl and alkyl substituents was also studied, resulting that the formation of dimers depends on both, the electronic properties and steric hindrance of the substituents. Both effects, an increase in steric hindrance in the alkyl moiety or the presence of strongly electron donor groups in the aromatic substituent that stabilizes the radical cation, prevent the dimer formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA