Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bio Protoc ; 10(24): e3849, 2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-33659498

RESUMO

Hookworms are skin penetrating parasites, however in the laboratory the hookworm model Nippostrongylus brasiliensis, the parasite is traditionally administered subcutaneously bypassing the skin (epidermis and dermis). Here, we describe two complementary approaches for infecting mice with N. brasiliensis in order to study the skin immune responses. The first approach employs a skin percutaneous injection that is poorly efficient with the laboratory strain of the parasite in mice, but represents a natural infection. The second approach employs an intradermal injection of the parasite, allowing the controlled delivery of the parasitic larvae and leads to an infection that closely mimics the natural kinetics of parasite migration and development. Both of those infection models allow the investigator to study the skin immune response mounted against the parasite, in addition to detailed investigations of the early immunomodulatory strategies employed by the parasite during skin invasion.

2.
PLoS Pathog ; 14(3): e1006931, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29566094

RESUMO

As part of on-going efforts to control hookworm infection, the "human hookworm vaccine initiative" has recognised blood feeding as a feasible therapeutic target for inducing immunity against hookworm infection. To this end, molecular approaches have been used to identify candidate targets, such as Necator americanus (Na) haemoglobinase aspartic protease-1 (APR-1), with immunogenicity profiled in canine and hamster models. We sought to accelerate the immune analysis of these identified therapeutic targets by developing an appropriate mouse model. Here we demonstrate that Nippostrongylus brasiliensis (Nb), a phylogenetically distant strongylid nematode of rodents, begins blood feeding early in its development and that immunisation with Na-APR-1 can block its growth and completion of its life cycle. Furthermore, we identify a new haem detoxification pathway in Nb required for blood feeding that can be blocked by drugs of the quinolone family, reducing both infection burden and the associated anaemia in rodents. Collectively, our findings show that haem metabolism has potential as a checkpoint for interrupting hookworm development in early stages of the hookworm life cycle and that the Nippostrongylus brasiliensis rodent model is relevant for identifying novel therapeutic targets against human hookworm.


Assuntos
Anticorpos Anti-Helmínticos/farmacologia , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Eritrócitos/efeitos dos fármacos , Infecções por Uncinaria/prevenção & controle , Necator americanus/enzimologia , Nippostrongylus/crescimento & desenvolvimento , Infecções por Strongylida/prevenção & controle , Ancylostomatoidea/efeitos dos fármacos , Ancylostomatoidea/crescimento & desenvolvimento , Animais , Antígenos de Helmintos/imunologia , Ácido Aspártico Endopeptidases/imunologia , Eritrócitos/parasitologia , Feminino , Infecções por Uncinaria/parasitologia , Estágios do Ciclo de Vida , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nippostrongylus/efeitos dos fármacos , Infecções por Strongylida/parasitologia
3.
F1000Res ; 6: 56, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28491281

RESUMO

Nippostrongylus brasiliensis, a nematode parasite of rodents, has a parasitic life cycle that is an extremely useful model for the study of human hookworm infection, particularly in regards to the induced immune response. The current reference genome for this parasite is highly fragmented with minimal annotation, but new advances in long-read sequencing suggest that a more complete and annotated assembly should be an achievable goal. We de-novo assembled a single contig mitochondrial genome from N. brasiliensis using MinION R9 nanopore data. The assembly was error-corrected using existing Illumina HiSeq reads, and annotated in full (i.e. gene boundary definitions without substantial gaps) by comparing with annotated genomes from similar parasite relatives. The mitochondrial genome has also been annotated with a preliminary electrical consensus sequence, using raw signal data generated from a Nanopore R9 flow cell.

4.
Mol Cell Proteomics ; 13(10): 2736-51, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24994561

RESUMO

Hookworms infect more than 700 million people worldwide and cause more morbidity than most other human parasitic infections. Nippostrongylus brasiliensis (the rat hookworm) has been used as an experimental model for human hookworm because of its similar life cycle and ease of maintenance in laboratory rodents. Adult N. brasiliensis, like the human hookworm, lives in the intestine of the host and releases excretory/secretory products (ESP), which represent the major host-parasite interface. We performed a comparative proteomic analysis of infective larval (L3) and adult worm stages of N. brasiliensis to gain insights into the molecular bases of host-parasite relationships and determine whether N. brasiliensis could indeed serve as an appropriate model for studying human hookworm infections. Proteomic data were matched to a transcriptomic database assembled from 245,874,892 Illumina reads from different developmental stages (eggs, L3, L4, and adult) of N. brasiliensis yielding∼18,426 unigenes with 39,063 possible isoform transcripts. From this analysis, 313 proteins were identified from ESPs by LC-MS/MS-52 in the L3 and 261 in the adult worm. Most of the proteins identified in the study were stage-specific (only 13 proteins were shared by both stages); in particular, two families of proteins-astacin metalloproteases and CAP-domain containing SCP/TAPS-were highly represented in both L3 and adult ESP. These protein families are present in most nematode groups, and where studied, appear to play roles in larval migration and evasion of the host's immune response. Phylogenetic analyses of defined protein families and global gene similarity analyses showed that N. brasiliensis has a greater degree of conservation with human hookworm than other model nematodes examined. These findings validate the use of N. brasiliensis as a suitable parasite for the study of human hookworm infections in a tractable animal model.


Assuntos
Ancylostomatoidea/crescimento & desenvolvimento , Trato Gastrointestinal/parasitologia , Proteínas de Helminto/metabolismo , Estágios do Ciclo de Vida , Proteoma/análise , Ancylostomatoidea/metabolismo , Animais , Sequência de Bases , Sequência Conservada , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Filogenia , Proteoma/metabolismo , Proteômica/métodos , Ratos , Ratos Sprague-Dawley , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA