Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 319(Pt 3): 117315, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37852339

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Maytenus ilicifolia Mart. ex Reissek, a medicinal plant used for treating gastritis, ulcers, and gastric disorders, possesses therapeutic properties attributed to diverse leaf compounds-terpenoids, alkaloids, flavonoids, phenols, and tannins, reflecting the ethnopharmacological knowledge of traditional users. AIMS OF THE STUDY: We aimed to assess the antioxidant and antiglycant capacities of Maytenus ilicifolia's ethanolic extract and organic fractions, identify bioactive compounds through HPLC-MS/MS analysis, and conduct phytochemical assessments. We also assessed their potential to inhibit digestive and cholinesterase enzymes, mitigate oxidation of human LDL and rat hepatic tissue, and examine their antimicrobial and cytotoxic properties. MATERIALS AND METHODS: Organic fractions (hexane - HF-Mi, dichloromethane - DMF-Mi, ethyl acetate - EAF-Mi, n-butanol - BF-Mi, and hydromethanolic - HMF-Mi) were obtained via liquid-liquid partitioning. Antioxidant (DPPH, FRAP, ORAC) and antiglycant (BSA/FRU, BSA/MGO, ARG/MGO/LDL/MGO models) capacities were tested. Phytochemical analysis employed HPLC-MS/MS. We also studied the inhibitory effects on α-amylase, acetylcholinesterase, butyrylcholinesterase, human LDL and rat hepatic tissue oxidation, antimicrobial activity, and cytotoxicity against RAW 264.7 macrophages. RESULTS: HPLC-ESI-MS/MS identified antioxidant compounds such as catechin, quercetin, and kaempferol derivatives. Ethanolic extract (EE-Mi) and organic fractions demonstrated robust antioxidant and antiglycant activity. EAF-Mi and BF-Mi inhibited α-amylase (2.42 µg/mL and 7.95 µg/mL) compared to acarbose (0.144 µg/mL). Most organic fractions exhibited ∼50% inhibition of acetylcholinesterase and butyrylcholinesterase, rivaling galantamine and rivastigmine. EAF-Mi, BF-Mi, and EE-Mi excelled in inhibiting lipid peroxidation. All fractions, except HMF-Mi, effectively countered LDL oxidation, evidenced by the area under the curve. These fractions protected LDL against lipid peroxidation. CONCLUSION: This study unveils Maytenus ilicifolia's ethanolic extract and organic fractions properties. Through rigorous analysis, we identify bioactive compounds and highlight their antioxidant, antiglycant, enzyme inhibition, and protective properties against oxidative damage. These findings underline its significance in modern pharmacology and its potential applications in healthcare.


Assuntos
Anti-Infecciosos , Celastraceae , Maytenus , Humanos , Animais , Ratos , Peroxidação de Lipídeos , Acetilcolinesterase , Butirilcolinesterase , Antioxidantes/farmacologia , Reação de Maillard , Óxido de Magnésio , Espectrometria de Massas em Tandem , Compostos Fitoquímicos , alfa-Amilases , Extratos Vegetais/farmacologia
2.
Foods ; 12(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37297342

RESUMO

Dyslipidemia and oxidative stress are directly related to the pathogenesis of cardiovascular diseases. Annona crassiflora Mart. (ACM) has been traditionally used in folk medicine to alleviate inflammation and pain. This plant is rich in polyphenols, which exhibit high antioxidant capacity. The present study aimed to elucidate the antioxidant properties of ACM in the heart of hyperlipidemic mice. The animals were orally administered either a crude ethanol extract (CEAc) or a polyphenols-rich fraction (PFAc) obtained from ACM fruit peel. There were correlations between blood and fecal biochemical data with cardiac oxidative stress biomarkers. Here, the pre-treatment with CEAc for 12 d led to an increase in glutathione content (GSH) and a reduction in the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase. Moreover, PFAc was found to enhance the total antioxidant capacity as well as GSH, SOD and CAT activities, which were reduced by Triton WR-1339-induced hyperlipidemia. Moreover, the administration of PFAc before the treatment resulted in a decrease in protein carbonylation and lipid peroxidation levels, as well as a reduction in the activities of glutathione reductase and glucose-6-phosphate dehydrogenase. ACM fruit peel showed improvement in the glutathione system, mainly its polyphenols-rich fraction, indicating a potential cardioprotective antioxidant usage of this plant extract.

3.
Photochem Photobiol Sci ; 22(6): 1341-1356, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36867369

RESUMO

Prostate cancer is the most common cancer in American men, aside from skin cancer. As an alternative cancer treatment, photodynamic laser therapy (PDT) can be used to induce cell death. We evaluated the PDT effect, using methylene blue as a photosensitizer, in human prostate tumor cells (PC3). PC3 were subjected to four different conditions: DMEM (control); laser treatment (L-660 nm, 100 mW, 100 J.cm-2); methylene blue treatment (MB-25 µM, 30 min), and MB treatment followed by low-level red laser irradiation (MB-PDT). Groups were evaluated after 24 h. MB-PDT treatment reduced cell viability and migration. However, because MB-PDT did not significantly increase the levels of active caspase-3 and BCL-2, apoptosis was not the primary mode of cell death. MB-PDT, on the other hand, increased the acid compartment by 100% and the LC3 immunofluorescence (an autophagy marker) by 254%. Active MLKL level, a necroptosis marker, was higher in PC3 cells after MB-PDT treatment. Furthermore, MB-PDT resulted in oxidative stress due to a decrease in total antioxidant potential, catalase levels, and increased lipid peroxidation. According to these findings, MB-PDT therapy is effective at inducing oxidative stress and reducing PC3 cell viability. In such therapy, necroptosis is also an important mechanism of cell death triggered by autophagy.


Assuntos
Fotoquimioterapia , Neoplasias da Próstata , Masculino , Humanos , Fotoquimioterapia/métodos , Sobrevivência Celular , Azul de Metileno/farmacologia , Necroptose , Fármacos Fotossensibilizantes/farmacologia , Neoplasias da Próstata/tratamento farmacológico
4.
Int J Dev Neurosci ; 82(8): 727-735, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35916248

RESUMO

The use of benzodiazepines (BZDs) during pregnancy, especially alprazolam, is common and its impact on the fetal neural tissue is not known. In this sense, the present study aimed to investigate the effects of prenatal treatment with alprazolam on the cerebellum of Wistar rat pups. Thirty animals (24 females and six males, CEUA protocol 014/17) were separated into pairs for copulation. Females were divided into three groups: Control (CT), treatment 1 (T1, 1.25 mg per animal), and treatment 2, which is an overdose (T2, 30 mg per animal). Alprazolam was administered 10 days before copulation and throughout pregnancy. We evaluated the number and weight of pups and the macroscopic changes in the brain. Eight neonates (n = 8) from each group were used in the following analyses: Cellular and chromatin density, gliosis, synaptic density, inflammation, and oxidative stress. The results showed no significant differences regarding the number of pups, body weight, and macroscopic changes. The morphological study focused on the external granular layer (EGL) that is presented only in the immature cerebellum. Here, we detected more cells after alprazolam treatment; the T2 group showed large nuclei and some pyknotic nuclei; also, both treated groups presented an increase in the euchromatin density compared with the control. The molecular and biochemical analyses used the total protein extract of the entire cerebellum and showed an increased expression of Iba-1 and NF-κBp65 but without indication of inflammation or degeneration in the T1 group. Overdose of alprazolam presented an increased level of oxidative degradation of lipids. The treatment with alprazolam during pregnancy involved cellular and molecular changes in the immature cerebellum.


Assuntos
Alprazolam , Cerebelo , Gravidez , Masculino , Feminino , Animais , Ratos , Alprazolam/toxicidade , Ratos Wistar , Encéfalo , Inflamação
5.
Biomed Pharmacother ; 142: 112049, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34426250

RESUMO

Dyslipidemia is a risk factor for the pathogenesis of several diseases, such as obesity, hypertension, atherosclerosis and cardiovascular diseases. In addition to interfering with serum concentrations of cholesterol and triglycerides, hyperlipidemia is involved in oxidative stress increase and reduction of the endogenous antioxidant defenses. The fruit peel of Annona crassiflora crude extract (CEAc) and its polyphenols-rich fraction (PFAc) were investigated against hypertriglyceridemia, hypercholesterolemia and hepatic oxidative stress in Triton WR-1339-induced hyperlipidemic mice. Lipid parameters in serum, feces and liver, as well as hepatic oxidative status, and enzymatic and non-enzymatic antioxidant defense systems were analyzed. Pre-treatment with CEAc for 12 days decreased hepatic triglycerides and total cholesterol, and similar to PFAc, increased the high-density lipoprotein level. There were reductions in lipid peroxidation and protein carbonylation, as well as restoration of the glutathione defense system and total thiol content in the liver of the hyperlipidemic mice treated with PFAc. The fruit peel of A. crassiflora, a promising natural source of bioactive molecules, showed a potential lipid-lowering action and hepatoprotective activities triggered by reduction of oxidative damage and maintenance of the enzymatic and non-enzymatic antioxidant systems impaired by the hyperlipidemic state.


Assuntos
Annona/química , Antioxidantes/farmacologia , Glutationa/metabolismo , Hiperlipidemias/tratamento farmacológico , Hipolipemiantes/farmacologia , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Animais , Antioxidantes/isolamento & purificação , Antioxidantes/uso terapêutico , Colesterol/metabolismo , Frutas/química , Hiperlipidemias/induzido quimicamente , Hipolipemiantes/isolamento & purificação , Hipolipemiantes/uso terapêutico , Metabolismo dos Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Oxirredutases/metabolismo , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/uso terapêutico , Polietilenoglicóis/toxicidade , Polifenóis/isolamento & purificação , Polifenóis/uso terapêutico , Carbonilação Proteica/efeitos dos fármacos , Triglicerídeos/metabolismo
6.
Cell Biol Int ; 43(4): 373-383, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30353973

RESUMO

Recent studies have been trying to find out how diet and metabolic changes such as dyslipidaemia, hyperglycaemia, and hyperinsulinaemia can stimulate cancer progression. This investigation aimed to evaluate the effect of high concentrations of fatty acids and/or glucose in tumour prostate cells, focusing on the proliferation/migration profile and oxidative stress. PC3 cells were treated with high concentration of saturated fatty acid (palmitate, 100 µM), glucose (220 mg/dL), or both for 24 or 48 h. Results demonstrated that PC3 cells showed a significant increase in proliferation after 48 h of treatment with glucose and palmitate+glucose. Cell proliferation was associated with reduced levels of AMPK phosphorylation in glucose group at 24 and 48 h of treatment, while palmitate group presented this result only after 48 h of treatment. Also, there was a significant increase in cell migration between time 0 and 48 h after all treatments, except in the control. Catalase activity was increased by palmitate in the beginning of treatment, while glucose presented a later effect. Also, nitrite production was increased by glucose only after 48 h, and the total antioxidant activity was enhanced by palmitate in the initial hours. Thus, we conclude that the high concentration of the saturated fatty acid palmitate and glucose in vitro influences PC3 cells and stimulates cellular activities related to carcinogenesis such as cell proliferation, migration, and oxidative stress in different ways. Palmitate presents a rapid and initial effect, while a glucose environment stimulates cells later on, maintaining high levels of cell proliferation.


Assuntos
Glucose/metabolismo , Palmitatos/metabolismo , Neoplasias da Próstata/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ácidos Graxos/metabolismo , Glucose/efeitos adversos , Glucose/fisiologia , Humanos , Hiperinsulinismo/metabolismo , Insulina/metabolismo , Masculino , Células PC-3/efeitos dos fármacos , Palmitatos/farmacologia , Fosforilação , Próstata/metabolismo
7.
Neurochem Int ; 120: 140-148, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30138641

RESUMO

Excessive fat consumption increases the level of fatty acids (FAs) in the blood, which reach the hypothalamus and damage the circuit related to energy balance. In the present study, we used palmitate in a primary culture of purified astrocytes to mimic the fat-rich environment found in obesity. Our results showed increased glial fibrillary acidic protein (GFAP) reactivity in hypothalamic astrocytes compared to cortical astrocytes. In addition, palmitate-treated astrocytes showed no significant changes in cytokine expression and an upregulation of glutathione in the culture medium that may serve as an intrinsic neuroprotective property against excess FA. Additionally, purified hypothalamic neurons were incubated with palmitate-treated astrocyte-conditioned medium (MPAL). MPAL treated-neurons exhibited a reduction in excitatory synapses and enhanced neuritogenesis. Our results suggest that hypothalamic astrocytes react to palmitate differently than cortical astrocytes and influence the behavior of the neural network related to energy balance. Our work brings a better understanding of the interactions among hypothalamic neurons in a high FA environment, similarly to obesity induced by a high-fat diet.


Assuntos
Astrócitos/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Hipotálamo/efeitos dos fármacos , Palmitatos/farmacologia , Sinapses/efeitos dos fármacos , Animais , Astrócitos/metabolismo , Células Cultivadas , Proteína Glial Fibrilar Ácida/metabolismo , Glutationa/metabolismo , Hipotálamo/metabolismo , Camundongos , Neurônios/metabolismo , Sinapses/metabolismo
8.
J Exerc Rehabil ; 13(3): 284-291, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28702439

RESUMO

This study examined physiological variables of animals fed with a high-fat diet (HFD) or with a normal diet (ND) subjected to swimming at low and moderate level. Over 16 weeks, a group of animals was fed with HFD or ND, and at the 8 weeks, they started swimming with 50% or 80% of the maximum load achieved in the progressive work test. Weekly, body weight and the amount of ingested food were registered. The glycemic level was measured at the beginning, middle and at the end of the experiment. Adipose tissue, gastrocnemius muscles and hearts were collected for morphometry. The results showed that the animals fed an HFD had a minor caloric intake; however, the HFD increased body weight and adiposity, likely causing cardiac hypertrophy and an increase in the glycemic level. In this context, swimming with an 80% load contributed positively to weight control, adiposity, glycemic level, to control cardiac hypertrophy and induce hypertrophy in the gastrocnemius muscle. All parameters assessed showed better results for the ND animals. Therefore, the importance of fat consumption was emphasized in relation to obesity onset. The practice of swimming with an 80% load produced greater benefits than swimming with a 50% load for overweight treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA