Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 35(17)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38266307

RESUMO

In this work, we have studied the multi-photon excited photoluminescence from metal nanoclusters (NCs) of Au, Ag and Pt embedded in Al2O3matrix by ion implantation. The thermal annealing process allows to obtain a system composed of larger plasmonic metal nanoparticles (NPs) surrounded by photoluminescent ultra-small metal NCs. By exciting at 1064 nm, visible emission, ranging from 450 to 800 nm, was detected. The second and fourth-order nature of the multiphoton process was verified in a power-dependent study measured for each sample below the damage threshold. Experiments show that Au and Ag NCs exhibit a four-fold enhanced multiphoton excited photoluminescence with respect to that observed for Pt NCs, which can be explained as a result of a plasmon-mediated near-field process that is of less intensity for Pt NPs. These findings provide new opportunities to combine plasmonic nanoparticles and photoluminescent nanoclusters inside a robust inorganic matrix to improve their optical properties. Plasmon-enhanced multiphoton excited photoluminescence from metal nanoclusters may find potential application as ultrasmall fluorophores in multiphoton sensing, and in the development of solar cells with highly efficient energy conversion modules.

2.
Sci Rep ; 9(1): 5699, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30952901

RESUMO

An intense photoluminescence emission was observed from noble metal nanoclusters (Pt, Ag or Au) embedded in sapphire plates, nucleated by MeV ion-implantation and assisted by an annealing process. In particular, the spectral photoluminescence characteristics, such as range and peak emission, were compared to the behavior observed from Pt nanoclusters embedded in a silica matrix and excited by UV irradiation. Correlation between emission energy, nanoclusters size and metal composition were analyzed by using the scaling energy relation EFermi/N1/3 from the spherical Jellium model. The metal nanocluster luminescent spectra were numerically simulated and correctly fitted using the bulk Fermi energy for each metal and a Gaussian nanoclusters size distribution for the samples. Our results suggest protoplasmonics photoluminescence from metal nanoclusters free of surface state or strain effects at the nanoclusters-matrix interface that can influence over their optical properties. These metal nanoclusters present very promising optical features such as bright visible photoluminescence and photostability under strong picosecond laser excitations. Besides superlinear photoluminescence from metal nanoclusters were also observed under UV high power excitation showing a quadratic dependence on the pump power fluence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA