Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Funct Biomater ; 14(7)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37504869

RESUMO

Small interfering RNA (siRNA) molecules have limited transfection efficiency and stability, necessitating the use of delivery systems to be effective in gene knockdown therapies. In this regard, lipid-polymeric nanocarriers have emerged as a promising class of nanoparticles for siRNA delivery, particularly for topical applications. We proposed the use of solid lipid-polymer hybrid nanoparticles (SLPHNs) as topical delivery systems for siRNA. This approach was evaluated by assessing the ability of SLPHNs-siRNA complexes to internalize siRNA molecules and both to penetrate skin layers in vitro and induce gene knocking down in a skin cell line. The SLPHNs were formed by a specific composition of solid lipids, a surfactant polymer as a dispersive agent, and a cationic polymer as a complexing agent for siRNA. The optimized nanocarriers exhibited a spherical shape with a smooth surface. The average diameter of the nanoparticles was found to be 200 nm, and the zeta potential was measured to be +20 mV. Furthermore, these nanocarriers demonstrated excellent stability when stored at 4 °C over a period of 90 days. In vitro and in vivo permeation studies showed that SLPHNs increased the cutaneous penetration of fluorescent-labeled siRNA, which reached deeper skin layers. Efficacy studies were conducted on keratinocytes and fibroblasts, showing that SLPHNs maintained cell viability and high cellular uptake. Furthermore, SLPHNs complexed with siRNA against Firefly luciferase (siLuc) reduced luciferase expression, proving the efficacy of this nanocarrier in providing adequate intracellular release of siRNA for silencing specific genes. Based on these results, the developed carriers are promising siRNA delivery systems for skin disease therapy.

2.
J Pharm Sci ; 107(3): 870-878, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29108729

RESUMO

Celecoxib (CXB) is a widely used anti-inflammatory drug that also acts as a chemopreventive agent against several types of cancer, including skin cancer. As the long-term oral administration of CXB has been associated with severe side effects, the skin delivery of this drug represents a promising alternative for the treatment of skin inflammatory conditions and chemoprevention of skin cancer. We prepared and characterized liquid crystalline systems based on glyceryl monooleate and water containing penetration enhancers which were primarily designed to promote skin delivery of CXB. Analysis of their phase behavior revealed the formation of cubic and hexagonal phases depending on the systems' composition. The systems' structure and composition markedly affected the in vitro CXB release profile. Oleic acid reduced CXB release rate, but association oleic acid/propylene glycol increased the drug release rate. The developed systems significantly reduced inflammation in an aerosil-induced rat paw edema model. The systems' composition and liquid crystalline structure influenced their anti-inflammatory potency. Cubic phase systems containing oleic acid/propylene glycol association reduced edema in a sustained manner, indicating that they modulate CXB release and permeation. Our findings demonstrate that the developed liquid crystalline systems are potential carriers for the skin delivery of CXB.


Assuntos
Celecoxib/química , Glicerídeos/química , Cristais Líquidos/química , Pele/metabolismo , Administração Cutânea , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Celecoxib/farmacologia , Química Farmacêutica/métodos , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos/efeitos dos fármacos , Edema/tratamento farmacológico , Inflamação/tratamento farmacológico , Masculino , Ácido Oleico/química , Permeabilidade/efeitos dos fármacos , Propilenoglicol/química , Ratos , Ratos Wistar , Absorção Cutânea/efeitos dos fármacos , Absorção Cutânea/fisiologia , Solubilidade/efeitos dos fármacos , Água/química
3.
Med Mycol ; 55(5): 461-475, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27703019

RESUMO

Onychomycosis is a fungal infection of the fingernails or toenails caused by dermatophytes, nondermatophytes, moulds, and yeasts. This condition affects around 10-30% people worldwide, negatively influencing patients' quality of life, with severe outcomes in some cases. Since the nail unit acts as a barrier to exogenous substances, its physiological features hampers drug penetration, turning the onychomycosis treatment a challenge. Currently, there are several oral and topical therapies available; nevertheless, cure rates are still low and relapse rates achieves 10-53%. Also, serious side effects may be developed due to long-term treatment. In light of these facts, researchers have focused on improving topical treatments, either by modifying the vehicle or by using some physical technique to improve drug delivery trough the nail plate, hence increasing therapy effectiveness. Therefore, the aim of this paper is to explain these novel alternative approaches. First, the challenges for drug ungual penetration are presented. Then, the chemical and physical strategies developed for overcoming the barriers for drug penetration are discussed. We hope that the information gathered may be useful for the development of safer and more effective treatments for onychomycosis.


Assuntos
Antifúngicos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Dermatoses do Pé/tratamento farmacológico , Unhas/microbiologia , Onicomicose/tratamento farmacológico , Administração Tópica , Sistemas de Liberação de Medicamentos/normas , Humanos , Unhas/anatomia & histologia , Unhas/química , Qualidade de Vida
4.
Eur J Pharm Biopharm ; 105: 50-8, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27224855

RESUMO

Gene therapy by RNA interference (RNAi) is a post-transcriptional silencing process that can suppress the expression of a particular gene and it is a promising therapeutic approach for the treatment of many severe diseases, including cutaneous disorders. However, difficulties related to administration and body distribution limit the clinical use of small interfering RNA (siRNA) molecules. In this study, we proposed to use nanocarriers to enable siRNA application in the topical treatment of skin disorders. A siRNA nanodispersion based on liquid crystalline phase and composed of monoolein (MO), oleic acid (OA) and polyethylenimine (PEI) was developed and its physicochemical properties, efficiency of complexation and carrier/siRNA stability were assessed. Subsequently, cell viability, cellular uptake, in vitro skin irritation test using reconstructed human epidermis (RHE) and in vitro IL-6 knockdown in psoriasis skin model were evaluated. The results showed that the liquid crystalline nanodispersion is a promising topical delivery system for administration of siRNA, being able to overcome the limitations of the route of administration, as well those resulting from the characteristics of siRNA molecules. The formulation was effective at complexing the siRNA, presented high rate of cell uptake (∼90%), increased the skin penetration of siRNA in vitro, and did not cause skin irritation compared with Triton-X (a moderate irritant), resulting in a 4-fold higher viability of reconstructed human epidermis and a 15.6-fold lower release of IL-1α. A single treatment with the liquid crystalline nanodispersion carrying IL-6 siRNA for 6h was able to reduce the extracellular IL-6 levels by 3.3-fold compared with control treatment in psoriasis skin model. Therefore, liquid crystalline nanodispersion is a suitable nanocarrier for siRNA with therapeutic potential to suppress skin disease-specific genes. This study also highlights the applicability of reconstructed skin models in pharmaceutical field to evaluate the performance of delivery systems without the use of animal models.


Assuntos
Interleucina-6/genética , Modelos Biológicos , Psoríase/genética , Interferência de RNA , RNA Interferente Pequeno/administração & dosagem , Técnicas de Silenciamento de Genes , Humanos , Técnicas In Vitro
5.
Braz. j. pharm. sci ; 52(1): 191-200, Jan.-Mar. 2016. tab, graf
Artigo em Inglês | LILACS | ID: lil-789091

RESUMO

ABSTRACT Transdermal nicotine patches have been used in smoking cessation therapy, suggested for the treatment of skin disorders with eosinophilic infiltration and have been found to improve attention performance in patients with Alzheimer's disease and age-associated memory impairment. However, skin irritation with extended patch use is still a problem. The aim of this work was to develop a simple to prepare liquid crystalline system containing vitamin E TPGS that would be able to control nicotine delivery and reduce irritation and sensitization problems. The liquid crystalline phases were macroscopically characterized by visual analysis and examined microscopically under a polarized light microscope. Topical and transdermal delivery of nicotine were investigated in vitro using porcine ear skin mounted on a Franz diffusion cell. Nicotine skin permeation from the developed cubic phase followed zero-order kinetics (r = 0.993) and was significantly enhanced after 12 h when compared to the control formulation (nicotine solution) (p < 0.05) (138.86 ± 20.44 and 64.91 ± 4.06 μg/cm2, respectively). Cubic phase was also able to target viable skin layers in comparison to control solution (8.18 ± 1.89 and 2.63 ± 2.51 μg/cm2, respectively). Further studies to evaluate skin sensitization and irritation are now necessary.


RESUMO Adesivos transdérmicos de nicotina são utilizados para cessação de fumar, tratamento de problemas de pele com infiltração de eosinófilos e para melhorar a atenção em pacientes com doença de Alzheimer e enfraquecimento da memória associada à idade. No entanto, a irritação da pele com o uso prolongado dos adesivos ainda é um problema. O objetivo deste trabalho foi desenvolver sistema líquido cristalino (SLC) de preparo simples contendo vitamina E TPGS capaz de controlar a liberação de nicotina e reduzir os problemas de irritação cutânea. Os SLCs foram caracterizados por análise visual e microscopia de luz polarizada. As administrações tópica e transdérmica de nicotina foram investigadas in vitro utilizando pele de orelha de porco em célula de difusão de Franz. A permeação da nicotina veiculada pela fase cúbica desenvolvida seguiu cinética de ordem zero (r = 0,993) e foi significativamente maior do que o controle (solução de nicotina) após 12 h (p < 0,05) (138,86 ± 20,44 e 64,91 ± 4,06 µg/cm2, respectivamente). A fase cúbica também promoveu aumento da penetração de nicotina nas camadas viáveis da pele quando comparado ao controle (8,18 ± 1,89 e 2,63 ± 2,51 µg/cm2, respectivamente). Estudos futuros para avaliar a sensibilização e irritação da pele são necessários.


Assuntos
Vitamina E/análise , Nicotina/farmacocinética , Pele/lesões , Adesivo Transdérmico
6.
Eur J Pharm Sci ; 74: 103-17, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25917525

RESUMO

The development of delivery systems able to complex and release siRNA into the cytosol is essential for therapeutic use of siRNA. Among the delivery systems, local delivery has advantages over systemic administration. In this study, we developed and characterized non-viral carriers to deliver siRNA locally, based on polyethylenimine (PEI) as gene carrier, and a self-assembling drug delivery system that forms a gel in situ. Liquid crystalline formulations composed of monoglycerides (MO), PEI, propylene glycol (PG) and 0.1M Tris buffer pH 6.5 were developed and characterized by polarized light microscopy, Small Angle X-ray Scattering (SAXS), for their ability to form inverted type liquid crystalline phases (LC2) in contact with excess water, water absorption capacity, ability to complex with siRNA and siRNA release. In addition, gel formation in vivo was determined by subcutaneous injection of the formulations in mice. In water excess, precursor fluid formulations rapidly transformed into a viscous liquid crystalline phase. The presence of PEI influences the liquid crystalline structure of the LC2 formed and was crucial for complexing siRNA. The siRNA was released from the crystalline phase complexed with PEI. The release rate was dependent on the rate of water uptake. The formulation containing MO/PEI/PG/Tris buffer at 7.85:0.65:76.5:15 (w/w/w/w) complexed with 10 µM of siRNA, characterized as a mixture of cubic phase (diamond-type) and inverted hexagonal phase (after contact with excess water), showed sustained release for 7 days in vitro. In mice, in situ gel formation occurred after subcutaneous injection of the formulations, and the gels were degraded in 30 days. Initially a mild inflammatory process occurred in the tissue surrounding the gel; but after 14 days the tissue appeared normal. Taken together, this work demonstrates the rational development of an in situ gelling formulation for local release of siRNA.


Assuntos
Celulite (Flegmão)/prevenção & controle , Técnicas de Transferência de Genes/efeitos adversos , Polietilenoimina/química , Interferência de RNA , RNA Interferente Pequeno/administração & dosagem , Terapêutica com RNAi/efeitos adversos , Substâncias Viscoelásticas/química , Animais , Celulite (Flegmão)/induzido quimicamente , Celulite (Flegmão)/imunologia , Celulite (Flegmão)/patologia , Feminino , Géis , Glicerídeos/efeitos adversos , Glicerídeos/química , Injeções Subcutâneas , Camundongos Endogâmicos BALB C , Monoglicerídeos/efeitos adversos , Monoglicerídeos/química , Polietilenoimina/efeitos adversos , Propilenoglicol/efeitos adversos , Propilenoglicol/química , RNA Interferente Pequeno/efeitos adversos , RNA Interferente Pequeno/química , Pele/efeitos dos fármacos , Pele/imunologia , Pele/patologia , Solubilidade , Tela Subcutânea/efeitos dos fármacos , Tela Subcutânea/imunologia , Tela Subcutânea/patologia , Substâncias Viscoelásticas/efeitos adversos , Viscosidade , Água/análise
7.
Eur J Pharm Sci ; 58: 72-82, 2014 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-24726985

RESUMO

Liquid crystalline systems (LCSs) form interesting drug delivery systems. These include in situ gelling delivery systems, which present several advantages for use as self-assembling systems for local drug delivery. The aim of this study was to develop and characterize in situ gelling delivery systems for local siRNA delivery. The influence of the components that form the systems was investigated, and the systems were characterized by polarized light microscopy, Small Angle X-ray Scattering (SAXS), swelling studies, assays of their ability to form a complex with genes and of the stability of the genes in the system, as well as assays of in situ gelling formation and local toxicity using an animal model. The system containing a mixture of monoglycerides (MO), oleylamine (OAM), propylene glycol (PG) and tris buffer (8.16:0.34:76.5:15, w/w/w/w) was considered the most appropriate for local siRNA delivery purposes. The molecular structure was characterized as hexagonal phase; the swelling studies followed a second order kinetic model and the water absorption was a fast process reaching equilibrium at 2 h. The system formed a complex with siRNA and remained in a stable form. The gel was formed in vivo after subcutaneous administration of a precursor fluid formulation in mice and was biodegradable in 30 days. The inflammatory process that took place was considered normal. Therefore, the developed liquid crystalline delivery system shows the appropriate characteristics for use as a local siRNA delivery method for gene therapy.


Assuntos
Técnicas de Transferência de Genes , Cristais Líquidos/química , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/química , Aminas/química , Animais , Feminino , Géis , Camundongos Endogâmicos BALB C , Monoglicerídeos/química , Propilenoglicol/química , Trometamina/química
8.
Pharm Res ; 30(4): 915-31, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23344907

RESUMO

With the increasing number of studies proposing new and optimal delivery strategies for the efficacious silencing of gene-related diseases by the local administration of siRNAs, the present review aims to provide a broad overview of the most important and latest developments of non-viral siRNA delivery systems for local administration. Moreover, the main disease targets for the local delivery of siRNA to specific tissues or organs, including the skin, the lung, the eye, the nervous system, the digestive system and the vagina, were explored.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/uso terapêutico , Administração Tópica , Animais , Sistemas de Liberação de Medicamentos/instrumentação , Humanos , Interferência de RNA , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA